From d8773caffc33bb14fc59cd4a9c5f1e22bdb6b455 Mon Sep 17 00:00:00 2001 From: liuxiao93 Date: Mon, 24 Aug 2020 11:55:15 +0800 Subject: [PATCH] For nn.DepthwiseConv2d, padding support tuple. --- mindspore/nn/layer/conv.py | 15 +++++++++++---- mindspore/ops/operations/nn_ops.py | 23 +++++++++++++++++------ 2 files changed, 28 insertions(+), 10 deletions(-) diff --git a/mindspore/nn/layer/conv.py b/mindspore/nn/layer/conv.py index 6771a646c2f..389429bf057 100644 --- a/mindspore/nn/layer/conv.py +++ b/mindspore/nn/layer/conv.py @@ -68,6 +68,7 @@ class _Conv(Cell): self.group = check_int_positive(group) self.has_bias = has_bias if (not isinstance(kernel_size[0], int)) or (not isinstance(kernel_size[1], int)) or \ + isinstance(kernel_size[0], bool) or isinstance(kernel_size[1], bool) or \ kernel_size[0] < 1 or kernel_size[1] < 1: raise ValueError("Attr 'kernel_size' of 'Conv2D' Op passed " + str(self.kernel_size) + ", should be a int or tuple and equal to or greater than 1.") @@ -76,9 +77,9 @@ class _Conv(Cell): raise ValueError("Attr 'stride' of 'Conv2D' Op passed " + str(self.stride) + ", should be a int or tuple and equal to or greater than 1.") if (not isinstance(dilation[0], int)) or (not isinstance(dilation[1], int)) or \ - dilation[0] < 1 or dilation[1] < 1: + isinstance(dilation[0], bool) or isinstance(dilation[1], bool) or dilation[0] < 1 or dilation[1] < 1: raise ValueError("Attr 'dilation' of 'Conv2D' Op passed " - + str(self.dilation) + ", should equal to or greater than 1.") + + str(self.dilation) + ", should be a int or tuple and equal to or greater than 1.") if in_channels % group != 0: raise ValueError("Attr 'in_channels' of 'Conv2D' Op must be divisible by " "attr 'group' of 'Conv2D' Op.") @@ -845,7 +846,10 @@ class DepthwiseConv2d(Cell): - pad: Implicit paddings on both sides of the input. The number of `padding` will be padded to the input Tensor borders. `padding` should be greater than or equal to 0. - padding (int): Implicit paddings on both sides of the input. Default: 0. + padding (Union[int, tuple[int]]): Implicit paddings on both sides of the input. If `padding` is one integer, + the padding of top, bottom, left and right is the same, equal to padding. If `padding` is a tuple + with four integers, the padding of top, bottom, left and right will be equal to padding[0], + padding[1], padding[2], and padding[3] accordingly. Default: 0. dilation (Union[int, tuple[int]]): The data type is int or a tuple of 2 integers. Specifies the dilation rate to use for dilated convolution. If set to be :math:`k > 1`, there will be :math:`k - 1` pixels skipped for each sampling location. Its value should @@ -892,11 +896,14 @@ class DepthwiseConv2d(Cell): self.in_channels = check_int_positive(in_channels) self.out_channels = check_int_positive(out_channels) self.pad_mode = pad_mode - self.padding = padding self.dilation = dilation self.has_bias = has_bias self.weight_init = weight_init self.bias_init = bias_init + Validator.check_value_type('padding', padding, (int, tuple), self.cls_name) + if isinstance(padding, tuple): + Validator.check_integer('padding size', len(padding), 4, Rel.EQ, self.cls_name) + self.padding = padding self.conv = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=self.kernel_size, pad_mode=self.pad_mode, diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index db4360f6d3e..57ec4dbe82e 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -983,7 +983,9 @@ class DepthwiseConv2dNative(PrimitiveWithInfer): mode (int): 0 Math convolution, 1 cross-correlation convolution , 2 deconvolution, 3 depthwise convolution. Default: 3. pad_mode (str): "valid", "same", "pad" the mode to fill padding. Default: "valid". - pad (int): The pad value to fill. Default: 0. + pad (Union[int, tuple[int]]): The pad value to fill. Default: 0. If `pad` is one integer, the padding of + top, bottom, left and right is same, equal to pad. If `pad` is tuple with four integer, the padding + of top, bottom, left and right equal to pad[0], pad[1], pad[2], pad[3] with corresponding. stride (Union[int, tuple[int]]): The stride to apply conv filter. Default: 1. dilation (Union[int, tuple[int]]): Specifies the dilation rate to use for dilated convolution. Default: 1. group (int): Splits input into groups. Default: 1. @@ -1028,9 +1030,18 @@ class DepthwiseConv2dNative(PrimitiveWithInfer): raise ValueError("The height and width of dilation should be equal," f"but got height:{self.dilation[0]}, width:{self.dilation[1]}") self.add_prim_attr('dilation', (1, 1, self.dilation[0], self.dilation[1])) - validator.check_value_type('pad', pad, (int,), self.name) + validator.check_value_type('pad', pad, (int, tuple), self.name) + if isinstance(pad, int): + pad = (pad,) * 4 + else: + validator.check_integer('pad size', len(pad), 4, Rel.EQ, self.name) + self.padding = pad self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'], self.name) - self.pad = validator.check_pad_value_by_mode(pad_mode, pad, self.name) + if pad_mode != 'pad' and pad != (0, 0, 0, 0): + raise ValueError(f"For '{self.name}', padding must be zero when pad_mode is '{pad_mode}'.") + if self.pad_mode == 'pad': + for item in pad: + validator.check_integer('pad item', item, 0, Rel.GE, self.name) self.mode = validator.check_integer("mode", mode, 3, Rel.EQ, self.name) self.add_prim_attr('data_format', "NCHW") self.channel_multiplier = validator.check_integer("channel_multiplier", channel_multiplier, 0, Rel.GT, @@ -1065,11 +1076,11 @@ class DepthwiseConv2dNative(PrimitiveWithInfer): pad_left = math.floor(pad_needed_w / 2) pad_right = pad_needed_w - pad_left elif self.pad_mode == 'pad': - pad_top, pad_bottom, pad_left, pad_right = self.pad, self.pad, self.pad, self.pad + pad_top, pad_bottom, pad_left, pad_right = self.padding - h_out = 1 + (x_shape[2] + 2 * self.pad - kernel_size_h - (kernel_size_h - 1) * (dilation_h - 1)) \ + h_out = 1 + (x_shape[2] + pad_top + pad_bottom - kernel_size_h - (kernel_size_h - 1) * (dilation_h - 1)) \ / stride_h - w_out = 1 + (x_shape[3] + 2 * self.pad - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) \ + w_out = 1 + (x_shape[3] + pad_left + pad_right - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) \ / stride_w h_out = math.floor(h_out) w_out = math.floor(w_out)