!5112 fix SE-Resnet50 infer to use 24 epoch and add SE-Resnet50 readme description

Merge pull request !5112 from qujianwei/master
This commit is contained in:
mindspore-ci-bot 2020-08-26 12:32:55 +08:00 committed by Gitee
commit c05731b6d5
3 changed files with 47 additions and 6 deletions

View File

@ -128,6 +128,29 @@ Parameters for both training and evaluation can be set in config.py.
"lr": 0.1 # base learning rate
```
- config for SE-ResNet-50, ImageNet2012 dataset
```
"class_num": 1001, # dataset class number
"batch_size": 32, # batch size of input tensor
"loss_scale": 1024, # loss scale
"momentum": 0.9, # momentum optimizer
"weight_decay": 1e-4, # weight decay
"epoch_size": 28 , # epoch size for creating learning rate
"train_epoch_size": 24 # actual train epoch size
"pretrain_epoch_size": 0, # epoch size that model has been trained before loading pretrained checkpoint, actual training epoch size is equal to epoch_size minus pretrain_epoch_size
"save_checkpoint": True, # whether save checkpoint or not
"save_checkpoint_epochs": 4, # the epoch interval between two checkpoints. By default, the last checkpoint will be saved after the last epoch
"keep_checkpoint_max": 10, # only keep the last keep_checkpoint_max checkpoint
"save_checkpoint_path": "./", # path to save checkpoint relative to the executed path
"warmup_epochs": 3, # number of warmup epoch
"lr_decay_mode": "cosine" # decay mode for generating learning rate
"label_smooth": True, # label_smooth
"label_smooth_factor": 0.1, # label_smooth_factor
"lr_init": 0.0, # initial learning rate
"lr_max": 0.3, # maximum learning rate
"lr_end": 0.0001, # end learning rate
```
## Running the example
@ -138,12 +161,11 @@ Parameters for both training and evaluation can be set in config.py.
```
# distributed training
Usage: sh run_distribute_train.sh [resnet50|resnet101] [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH]
[PRETRAINED_CKPT_PATH](optional)
Usage: sh run_distribute_train.sh [resnet50|resnet101|se-resnet50] [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
# standalone training
Usage: sh run_standalone_train.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH]
[PRETRAINED_CKPT_PATH](optional)
Usage: sh run_standalone_train.sh [resnet50|resnet101|se-resnet50] [cifar10|imagenet2012] [DATASET_PATH]
[PRETRAINED_CKPT_PATH](optional)
```
@ -203,14 +225,24 @@ epoch: 69 step: 5004, loss is 2.0665488
epoch: 70 step: 5004, loss is 1.8717369
...
```
- training SE-ResNet-50 with ImageNet2012 dataset
```
# distribute training result(8 pcs)
epoch: 1 step: 5004, loss is 5.1779146
epoch: 2 step: 5004, loss is 4.139395
epoch: 3 step: 5004, loss is 3.9240637
epoch: 4 step: 5004, loss is 3.5011306
epoch: 5 step: 5004, loss is 3.3501816
...
```
### Evaluation
#### Usage
```
# evaluation
Usage: sh run_eval.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
Usage: sh run_eval.sh [resnet50|resnet101|se-resnet50] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
```
#### Launch
@ -244,6 +276,12 @@ result: {'acc': 0.7671054737516005} ckpt=train_parallel0/resnet-90_5004.ckpt
result: {'top_5_accuracy': 0.9429417413572343, 'top_1_accuracy': 0.7853513124199744} ckpt=train_parallel0/resnet-120_5004.ckpt
```
- evaluating SE-ResNet-50 with ImageNet2012 dataset
```
result: {'top_5_accuracy': 0.9342589628681178, 'top_1_accuracy': 0.768065781049936} ckpt=train_parallel0/resnet-24_5004.ckpt
```
### Running on GPU
```
# distributed training example

View File

@ -87,7 +87,8 @@ config4 = ed({
"momentum": 0.9,
"weight_decay": 1e-4,
"epoch_size": 28,
"pretrain_epoch_size": 1,
"train_epoch_size": 24,
"pretrain_epoch_size": 0,
"save_checkpoint": True,
"save_checkpoint_epochs": 4,
"keep_checkpoint_max": 10,

View File

@ -186,5 +186,7 @@ if __name__ == '__main__':
cb += [ckpt_cb]
# train model
if args_opt.net == "se-resnet50":
config.epoch_size = config.train_epoch_size
model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
dataset_sink_mode=(not args_opt.parameter_server))