forked from mindspore-Ecosystem/mindspore
!21670 fix: null numpy field in mindrecord will cause read error
Merge pull request !21670 from guozhijian/fix_null_numpy_field_in_mr
This commit is contained in:
commit
bff5cbda9c
|
@ -155,7 +155,9 @@ Status ColDescriptor::MaterializeTensorShape(int32_t num_elements, TensorShape *
|
|||
|
||||
// Sanity check the the computed element counts divide evenly into the input element count
|
||||
if (num_elements < num_elements_of_shape || num_elements_of_shape == 0 || num_elements % num_elements_of_shape != 0) {
|
||||
RETURN_STATUS_UNEXPECTED("Requested shape has an invalid element count!");
|
||||
std::string err = "Requested shape has an invalid element count! Number elements: " + std::to_string(num_elements) +
|
||||
", number elements of shape: " + std::to_string(num_elements_of_shape);
|
||||
RETURN_STATUS_UNEXPECTED(err);
|
||||
}
|
||||
|
||||
// If there was any unknown dimensions, then update the requested shape to fill in the unknown
|
||||
|
|
|
@ -282,7 +282,12 @@ Status MindRecordOp::LoadTensorRow(TensorRow *tensor_row, const std::vector<uint
|
|||
RETURN_IF_NOT_OK(Tensor::CreateScalar(s, &tensor));
|
||||
} else if (column.hasShape()) {
|
||||
auto new_shape = TensorShape(column.shape());
|
||||
RETURN_IF_NOT_OK(column.MaterializeTensorShape(static_cast<int32_t>(num_elements), &new_shape));
|
||||
// if the numpy is null, create empty tensor shape
|
||||
if (num_elements == 0) {
|
||||
new_shape = TensorShape({});
|
||||
} else {
|
||||
RETURN_IF_NOT_OK(column.MaterializeTensorShape(static_cast<int32_t>(num_elements), &new_shape));
|
||||
}
|
||||
RETURN_IF_NOT_OK(Tensor::CreateFromMemory(new_shape, type, data, &tensor));
|
||||
} else {
|
||||
std::vector<dsize_t> shapeDetails = {static_cast<dsize_t>(num_elements)};
|
||||
|
|
|
@ -421,6 +421,12 @@ MSRStatus ShardColumn::UncompressInt(const uint64_t &column_id, std::unique_ptr<
|
|||
|
||||
auto data = reinterpret_cast<const unsigned char *>(array_data.get());
|
||||
*data_ptr = std::make_unique<unsigned char[]>(*num_bytes);
|
||||
|
||||
// field is none. for example: numpy is null
|
||||
if (*num_bytes == 0) {
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
int ret_code = memcpy_s(data_ptr->get(), *num_bytes, data, *num_bytes);
|
||||
if (ret_code != 0) {
|
||||
MS_LOG(ERROR) << "Failed to copy data!";
|
||||
|
|
|
@ -2568,6 +2568,60 @@ def test_distributed_shuffle_with_multi_epochs(create_multi_mindrecord_files):
|
|||
assert datas_epoch2 not in (datas_epoch1, datas_epoch3)
|
||||
assert datas_epoch3 not in (datas_epoch2, datas_epoch1)
|
||||
|
||||
def test_field_is_null_numpy():
|
||||
"""add/remove nlp file"""
|
||||
paths = ["{}{}".format(NLP_FILE_NAME, str(x).rjust(1, '0'))
|
||||
for x in range(FILES_NUM)]
|
||||
for x in paths:
|
||||
if os.path.exists("{}".format(x)):
|
||||
os.remove("{}".format(x))
|
||||
if os.path.exists("{}.db".format(x)):
|
||||
os.remove("{}.db".format(x))
|
||||
|
||||
writer = FileWriter(NLP_FILE_NAME, FILES_NUM)
|
||||
data = []
|
||||
# field array_d is null
|
||||
for row_id in range(16):
|
||||
data.append({
|
||||
"label": row_id,
|
||||
"array_a": np.reshape(np.array([0, 1, -1, 127, -128, 128, -129,
|
||||
255, 256, -32768, 32767, -32769, 32768, -2147483648,
|
||||
2147483647], dtype=np.int32), [-1]),
|
||||
"array_b": np.reshape(np.array([0, 1, -1, 127, -128, 128, -129, 255,
|
||||
256, -32768, 32767, -32769, 32768,
|
||||
-2147483648, 2147483647, -2147483649, 2147483649,
|
||||
-922337036854775808, 9223372036854775807]), [1, -1]),
|
||||
"array_d": np.array([], dtype=np.int64)
|
||||
})
|
||||
nlp_schema_json = {"label": {"type": "int32"},
|
||||
"array_a": {"type": "int32",
|
||||
"shape": [-1]},
|
||||
"array_b": {"type": "int64",
|
||||
"shape": [1, -1]},
|
||||
"array_d": {"type": "int64",
|
||||
"shape": [-1]}
|
||||
}
|
||||
writer.set_header_size(1 << 14)
|
||||
writer.set_page_size(1 << 15)
|
||||
writer.add_schema(nlp_schema_json, "nlp_schema")
|
||||
writer.write_raw_data(data)
|
||||
writer.commit()
|
||||
|
||||
data_set = ds.MindDataset(dataset_file=NLP_FILE_NAME + "0",
|
||||
columns_list=["label", "array_a", "array_b", "array_d"],
|
||||
num_parallel_workers=2,
|
||||
shuffle=False)
|
||||
assert data_set.get_dataset_size() == 16
|
||||
assert data_set.output_shapes() == [[], [15], [1, 19], []]
|
||||
assert data_set.output_types()[0] == np.int32
|
||||
assert data_set.output_types()[1] == np.int32
|
||||
assert data_set.output_types()[2] == np.int64
|
||||
assert data_set.output_types()[3] == np.int64
|
||||
|
||||
for x in paths:
|
||||
os.remove("{}".format(x))
|
||||
os.remove("{}.db".format(x))
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_nlp_compress_data(add_and_remove_nlp_compress_file)
|
||||
test_nlp_compress_data_old_version(add_and_remove_nlp_compress_file)
|
||||
|
@ -2603,3 +2657,4 @@ if __name__ == '__main__':
|
|||
test_shuffle_with_global_infile_files(create_multi_mindrecord_files)
|
||||
test_distributed_shuffle_with_global_infile_files(create_multi_mindrecord_files)
|
||||
test_distributed_shuffle_with_multi_epochs(create_multi_mindrecord_files)
|
||||
test_field_is_null_numpy()
|
||||
|
|
Loading…
Reference in New Issue