!1498 Cleanup and improvement for UniformAugOp

Merge pull request !1498 from anthonyaje/cleanup_uniform_aug
This commit is contained in:
mindspore-ci-bot 2020-05-28 04:52:37 +08:00 committed by Gitee
commit bfda2facfa
3 changed files with 17 additions and 34 deletions

View File

@ -290,7 +290,8 @@ void bindTensorOps1(py::module *m) {
(void)py::class_<UniformAugOp, TensorOp, std::shared_ptr<UniformAugOp>>( (void)py::class_<UniformAugOp, TensorOp, std::shared_ptr<UniformAugOp>>(
*m, "UniformAugOp", "Tensor operation to apply random augmentation(s).") *m, "UniformAugOp", "Tensor operation to apply random augmentation(s).")
.def(py::init<py::list, int32_t>(), py::arg("operations"), py::arg("NumOps") = UniformAugOp::kDefNumOps); .def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("operations"),
py::arg("NumOps") = UniformAugOp::kDefNumOps);
(void)py::class_<ResizeBilinearOp, TensorOp, std::shared_ptr<ResizeBilinearOp>>( (void)py::class_<ResizeBilinearOp, TensorOp, std::shared_ptr<ResizeBilinearOp>>(
*m, "ResizeBilinearOp", *m, "ResizeBilinearOp",

View File

@ -13,23 +13,16 @@
* See the License for the specific language governing permissions and * See the License for the specific language governing permissions and
* limitations under the License. * limitations under the License.
*/ */
#include <utility>
#include "dataset/kernels/image/uniform_aug_op.h" #include "dataset/kernels/image/uniform_aug_op.h"
#include "dataset/kernels/py_func_op.h"
#include "dataset/util/random.h" #include "dataset/util/random.h"
namespace mindspore { namespace mindspore {
namespace dataset { namespace dataset {
const int UniformAugOp::kDefNumOps = 2; const int UniformAugOp::kDefNumOps = 2;
UniformAugOp::UniformAugOp(py::list op_list, int32_t num_ops) : num_ops_(num_ops) { UniformAugOp::UniformAugOp(std::vector<std::shared_ptr<TensorOp>> op_list, int32_t num_ops)
std::shared_ptr<TensorOp> tensor_op; : tensor_op_list_(op_list), num_ops_(num_ops) {
// iterate over the op list, cast them to TensorOp and add them to tensor_op_list_
for (auto op : op_list) {
// only C++ op is accepted
tensor_op = op.cast<std::shared_ptr<TensorOp>>();
tensor_op_list_.insert(tensor_op_list_.begin(), tensor_op);
}
rnd_.seed(GetSeed()); rnd_.seed(GetSeed());
} }
@ -38,37 +31,28 @@ Status UniformAugOp::Compute(const std::vector<std::shared_ptr<Tensor>> &input,
std::vector<std::shared_ptr<Tensor>> *output) { std::vector<std::shared_ptr<Tensor>> *output) {
IO_CHECK_VECTOR(input, output); IO_CHECK_VECTOR(input, output);
// variables to copy the result to output if it is not already
std::vector<std::shared_ptr<Tensor>> even_out;
std::vector<std::shared_ptr<Tensor>> *even_out_ptr = &even_out;
int count = 1;
// randomly select ops to be applied // randomly select ops to be applied
std::vector<std::shared_ptr<TensorOp>> selected_tensor_ops; std::vector<std::shared_ptr<TensorOp>> selected_tensor_ops;
std::sample(tensor_op_list_.begin(), tensor_op_list_.end(), std::back_inserter(selected_tensor_ops), num_ops_, rnd_); std::sample(tensor_op_list_.begin(), tensor_op_list_.end(), std::back_inserter(selected_tensor_ops), num_ops_, rnd_);
for (auto tensor_op = selected_tensor_ops.begin(); tensor_op != selected_tensor_ops.end(); ++tensor_op) { bool first = true;
for (const auto &tensor_op : selected_tensor_ops) {
// Do NOT apply the op, if second random generator returned zero // Do NOT apply the op, if second random generator returned zero
if (std::uniform_int_distribution<int>(0, 1)(rnd_)) { if (std::uniform_int_distribution<int>(0, 1)(rnd_)) {
continue; continue;
} }
// apply C++ ops (note: python OPs are not accepted) // apply C++ ops (note: python OPs are not accepted)
if (count == 1) { if (first) {
RETURN_IF_NOT_OK((**tensor_op).Compute(input, output)); RETURN_IF_NOT_OK(tensor_op->Compute(input, output));
} else if (count % 2 == 0) { first = false;
RETURN_IF_NOT_OK((**tensor_op).Compute(*output, even_out_ptr));
} else { } else {
RETURN_IF_NOT_OK((**tensor_op).Compute(even_out, output)); RETURN_IF_NOT_OK(tensor_op->Compute(std::move(*output), output));
} }
count++;
} }
// copy the result to output if it is not in output // The case where no tensor op is applied.
if (count == 1) { if (output->empty()) {
*output = input; *output = input;
} else if ((count % 2 == 1)) {
(*output).swap(even_out);
} }
return Status::OK(); return Status::OK();

View File

@ -24,9 +24,6 @@
#include "dataset/core/tensor.h" #include "dataset/core/tensor.h"
#include "dataset/kernels/tensor_op.h" #include "dataset/kernels/tensor_op.h"
#include "dataset/util/status.h" #include "dataset/util/status.h"
#include "dataset/kernels/py_func_op.h"
#include "pybind11/stl.h"
namespace mindspore { namespace mindspore {
namespace dataset { namespace dataset {
@ -36,10 +33,11 @@ class UniformAugOp : public TensorOp {
static const int kDefNumOps; static const int kDefNumOps;
// Constructor for UniformAugOp // Constructor for UniformAugOp
// @param list op_list: list of candidate C++ operations // @param std::vector<std::shared_ptr<TensorOp>> op_list: list of candidate C++ operations
// @param list num_ops: number of augemtation operations to applied // @param int32_t num_ops: number of augemtation operations to applied
UniformAugOp(py::list op_list, int32_t num_ops); UniformAugOp(std::vector<std::shared_ptr<TensorOp>> op_list, int32_t num_ops);
// Destructor
~UniformAugOp() override = default; ~UniformAugOp() override = default;
void Print(std::ostream &out) const override { out << "UniformAugOp:: number of ops " << num_ops_; } void Print(std::ostream &out) const override { out << "UniformAugOp:: number of ops " << num_ops_; }