forked from mindspore-Ecosystem/mindspore
parent
7831c337c2
commit
bdbdc291f5
|
@ -0,0 +1,75 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Test high order grad with respect to parameter first, then input."""
|
||||
|
||||
import pytest
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops as ops
|
||||
from mindspore import Tensor, context
|
||||
from mindspore import ParameterTuple, Parameter
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.mul = ops.Mul()
|
||||
weight_np = np.array([2, 2]).astype(np.float32)
|
||||
self.weight = Parameter(Tensor(weight_np), name="weight", requires_grad=True)
|
||||
|
||||
def construct(self, x):
|
||||
x_square = self.mul(x, x)
|
||||
x_square_z = self.mul(x_square, self.weight)
|
||||
output = self.mul(x_square_z, self.weight)
|
||||
return output
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = ops.GradOperation(get_by_list=True, sens_param=False)
|
||||
self.network = network
|
||||
self.params = ParameterTuple(network.trainable_params())
|
||||
|
||||
def construct(self, x):
|
||||
output = self.grad(self.network, self.params)(x)
|
||||
return output
|
||||
|
||||
|
||||
class GradSec(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradSec, self).__init__()
|
||||
self.grad = ops.GradOperation(get_all=True, sens_param=False)
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
output = self.grad(self.network)(x)
|
||||
return output
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.platform_x86_cpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sit_high_order_grad_params():
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
x = Tensor(np.array([1, 1]).astype(np.float32))
|
||||
net = Net()
|
||||
first_grad = Grad(net)
|
||||
second_grad = GradSec(first_grad)
|
||||
grad = second_grad(x)
|
||||
assert (grad[0].asnumpy() == np.array([8, 8])).all()
|
Loading…
Reference in New Issue