high grad

Signed-off-by: Daniel <chentanjie@huawei.com>
This commit is contained in:
Daniel 2020-12-17 15:22:26 +08:00
parent 7831c337c2
commit bdbdc291f5
1 changed files with 75 additions and 0 deletions

View File

@ -0,0 +1,75 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test high order grad with respect to parameter first, then input."""
import pytest
import numpy as np
import mindspore.nn as nn
import mindspore.ops as ops
from mindspore import Tensor, context
from mindspore import ParameterTuple, Parameter
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.mul = ops.Mul()
weight_np = np.array([2, 2]).astype(np.float32)
self.weight = Parameter(Tensor(weight_np), name="weight", requires_grad=True)
def construct(self, x):
x_square = self.mul(x, x)
x_square_z = self.mul(x_square, self.weight)
output = self.mul(x_square_z, self.weight)
return output
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = ops.GradOperation(get_by_list=True, sens_param=False)
self.network = network
self.params = ParameterTuple(network.trainable_params())
def construct(self, x):
output = self.grad(self.network, self.params)(x)
return output
class GradSec(nn.Cell):
def __init__(self, network):
super(GradSec, self).__init__()
self.grad = ops.GradOperation(get_all=True, sens_param=False)
self.network = network
def construct(self, x):
output = self.grad(self.network)(x)
return output
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu_training
@pytest.mark.env_onecard
def test_sit_high_order_grad_params():
context.set_context(mode=context.GRAPH_MODE)
x = Tensor(np.array([1, 1]).astype(np.float32))
net = Net()
first_grad = Grad(net)
second_grad = GradSec(first_grad)
grad = second_grad(x)
assert (grad[0].asnumpy() == np.array([8, 8])).all()