!25457 add broadcast GPU float64 registration

Merge pull request !25457 from zhujingxuan/master
This commit is contained in:
i-robot 2021-10-28 07:54:39 +00:00 committed by Gitee
commit ba0e1a810e
2 changed files with 64 additions and 0 deletions

View File

@ -27,6 +27,10 @@ MS_REG_GPU_KERNEL_ONE(
Minimum,
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
BroadcastOpGpuKernel, double)
MS_REG_GPU_KERNEL_ONE(
Maximum,
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
BroadcastOpGpuKernel, double)
MS_REG_GPU_KERNEL_ONE(
Less, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeBool),
BroadcastOpGpuKernel, double)

View File

@ -297,6 +297,66 @@ def test_broadcast_diff_dims():
assert np.allclose(output_ms.asnumpy(), output_np)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_broadcast_diff_dims_float64():
"""
Feature: ALL To ALL
Description: test cases for broadcast operations execpted for DivNoNan
Expectation: the result match numpy results
"""
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
np.random.seed(42)
x1_np = np.random.rand(2).astype(np.float32)
x2_np = np.random.rand(2, 1).astype(np.float32)
output_ms = P.Minimum()(Tensor(x1_np), Tensor(x2_np))
output_np = np.minimum(x1_np, x2_np)
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.Maximum()(Tensor(x1_np), Tensor(x2_np))
output_np = np.maximum(x1_np, x2_np)
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.Greater()(Tensor(x1_np), Tensor(x2_np))
output_np = x1_np > x2_np
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.Less()(Tensor(x1_np), Tensor(x2_np))
output_np = x1_np < x2_np
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.Pow()(Tensor(x1_np), Tensor(x2_np))
output_np = np.power(x1_np, x2_np)
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.RealDiv()(Tensor(x1_np), Tensor(x2_np))
output_np = x1_np / x2_np
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.Mul()(Tensor(x1_np), Tensor(x2_np))
output_np = x1_np * x2_np
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.Sub()(Tensor(x1_np), Tensor(x2_np))
output_np = x1_np - x2_np
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.Mod()(Tensor(x1_np), Tensor(x2_np))
output_np = np.fmod(x1_np, x2_np)
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.FloorMod()(Tensor(x1_np), Tensor(x2_np))
output_np = np.mod(x1_np, x2_np)
assert np.allclose(output_ms.asnumpy(), output_np)
output_ms = P.Atan2()(Tensor(x1_np), Tensor(x2_np))
output_np = np.arctan2(x1_np, x2_np)
assert np.allclose(output_ms.asnumpy(), output_np)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard