!1081 format nn. and change quant.py

Merge pull request !1081 from SanjayChan/formast
This commit is contained in:
mindspore-ci-bot 2020-05-12 14:31:37 +08:00 committed by Gitee
commit b9d3495c4d
11 changed files with 56 additions and 21 deletions

View File

@ -17,24 +17,26 @@ Layer.
The high-level components(Cells) used to construct the neural network.
"""
from .activation import Softmax, LogSoftmax, ReLU, ReLU6, Tanh, GELU, ELU, Sigmoid, PReLU, get_activation, LeakyReLU, HSigmoid, HSwish
from .normalization import BatchNorm1d, BatchNorm2d, LayerNorm, GroupNorm, GlobalBatchNorm
from .container import SequentialCell, CellList
from .conv import Conv2d, Conv2dTranspose
from .lstm import LSTM
from .basic import Dropout, Flatten, Dense, ClipByNorm, Norm, OneHot, Pad, Unfold
from .embedding import Embedding
from .pooling import AvgPool2d, MaxPool2d, AvgPool1d
from .image import ImageGradients, SSIM, PSNR
from . import activation, normalization, container, conv, lstm, basic, embedding, pooling, image, quant
from .activation import *
from .normalization import *
from .container import *
from .conv import *
from .lstm import *
from .basic import *
from .embedding import *
from .pooling import *
from .image import *
from .quant import *
__all__ = ['Softmax', 'LogSoftmax', 'ReLU', 'ReLU6', 'Tanh', 'GELU', 'Sigmoid',
'PReLU', 'get_activation', 'LeakyReLU', 'HSigmoid', 'HSwish', 'ELU',
'BatchNorm1d', 'BatchNorm2d', 'LayerNorm', 'GroupNorm', 'GlobalBatchNorm',
'SequentialCell', 'CellList',
'Conv2d', 'Conv2dTranspose',
'LSTM',
'Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot',
'Embedding',
'AvgPool2d', 'MaxPool2d', 'AvgPool1d', 'Pad', 'Unfold',
'ImageGradients', 'SSIM', 'PSNR',
]
__all__ = []
__all__.extend(activation.__all__)
__all__.extend(normalization.__all__)
__all__.extend(container.__all__)
__all__.extend(conv.__all__)
__all__.extend(lstm.__all__)
__all__.extend(basic.__all__)
__all__.extend(embedding.__all__)
__all__.extend(pooling.__all__)
__all__.extend(image.__all__)
__all__.extend(quant.__all__)

View File

@ -22,6 +22,21 @@ from mindspore.common.tensor import Tensor
from mindspore._extends import cell_attr_register
from ..cell import Cell
__all__ = ['Softmax',
'LogSoftmax',
'ReLU',
'ReLU6',
'Tanh',
'GELU',
'Sigmoid',
'PReLU',
'get_activation',
'LeakyReLU',
'HSigmoid',
'HSwish',
'ELU',
]
class Softmax(Cell):
r"""
@ -54,6 +69,7 @@ class Softmax(Cell):
>>> softmax(input_x)
[0.03168 0.01166 0.0861 0.636 0.2341]
"""
def __init__(self, axis=-1):
super(Softmax, self).__init__()
self.softmax = P.Softmax(axis)
@ -128,6 +144,7 @@ class ELU(Cell):
>>> elu(input_x)
"""
def __init__(self, alpha=1.0):
super(ELU, self).__init__()
self.elu = P.Elu(alpha)
@ -156,6 +173,7 @@ class ReLU(Cell):
>>> relu(input_x)
[0. 2. 0. 2. 0.]
"""
def __init__(self):
super(ReLU, self).__init__()
self.relu = P.ReLU()
@ -184,6 +202,7 @@ class ReLU6(Cell):
>>> relu6(input_x)
[0. 0. 0. 2. 1.]
"""
def __init__(self):
super(ReLU6, self).__init__()
self.relu6 = P.ReLU6()
@ -221,6 +240,7 @@ class LeakyReLU(Cell):
[[-0.2 4. -1.6]
[ 2 -1. 9.]]
"""
def __init__(self, alpha=0.2):
super(LeakyReLU, self).__init__()
self.greater_equal = P.GreaterEqual()
@ -262,6 +282,7 @@ class Tanh(Cell):
>>> tanh(input_x)
[0.7617 0.964 0.995 0.964 0.7617]
"""
def __init__(self):
super(Tanh, self).__init__()
self.tanh = P.Tanh()
@ -293,6 +314,7 @@ class GELU(Cell):
[[-1.5880802e-01 3.9999299e+00 -3.1077917e-21]
[ 1.9545976e+00 -2.2918017e-07 9.0000000e+00]]
"""
def __init__(self):
super(GELU, self).__init__()
self.gelu = P.Gelu()
@ -322,6 +344,7 @@ class Sigmoid(Cell):
>>> sigmoid(input_x)
[0.2688 0.11914 0.5 0.881 0.7305]
"""
def __init__(self):
super(Sigmoid, self).__init__()
self.sigmoid = P.Sigmoid()
@ -410,6 +433,7 @@ class HSwish(Cell):
>>> hswish(input_x)
"""
def __init__(self):
super(HSwish, self).__init__()
self.hswish = P.HSwish()
@ -443,6 +467,7 @@ class HSigmoid(Cell):
>>> hsigmoid(input_x)
"""
def __init__(self):
super(HSigmoid, self).__init__()
self.hsigmoid = P.HSigmoid()

View File

@ -30,6 +30,7 @@ from ..cell import Cell
from .activation import get_activation
from ..._checkparam import Validator as validator
__all__ = ['Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot', 'Pad', 'Unfold']
class Dropout(Cell):
r"""

View File

@ -15,9 +15,9 @@
"""container"""
from collections import OrderedDict
from abc import abstractmethod, ABCMeta
from ..cell import Cell
__all__ = ['SequentialCell', 'CellList']
def _valid_index(cell_num, index):
if not isinstance(index, int):

View File

@ -21,6 +21,7 @@ from mindspore._checkparam import check_bool, twice, check_int_positive, check_i
from mindspore._extends import cell_attr_register
from ..cell import Cell
__all__ = ['Conv2d', 'Conv2dTranspose']
class _Conv(Cell):
"""

View File

@ -21,6 +21,7 @@ from mindspore.common.initializer import initializer
from ..cell import Cell
from ..._checkparam import Validator as validator
__all__ = ['Embedding']
class Embedding(Cell):
r"""

View File

@ -23,6 +23,7 @@ from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
from ..cell import Cell
__all__ = ['ImageGradients', 'SSIM', 'PSNR']
class ImageGradients(Cell):
r"""

View File

@ -19,6 +19,7 @@ from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer
from mindspore._checkparam import Validator as validator
__all__ = ['LSTM']
class LSTM(Cell):
r"""

View File

@ -29,6 +29,8 @@ from mindspore._checkparam import check_int_positive
from ..cell import Cell
__all__ = ['BatchNorm1d', 'BatchNorm2d', 'LayerNorm', 'GroupNorm', 'GlobalBatchNorm']
class _BatchNorm(Cell):
"""Batch Normalization base class."""
@cell_attr_register

View File

@ -21,6 +21,7 @@ from ... import context
from ..cell import Cell
from ..._checkparam import Rel
__all__ = ['AvgPool2d', 'MaxPool2d', 'AvgPool1d']
class _PoolNd(Cell):
"""N-D AvgPool"""