forked from mindspore-Ecosystem/mindspore
Add GPU send and recv controlling kernels.
This commit is contained in:
parent
5ed799d7b2
commit
b8a9121597
|
@ -96,7 +96,7 @@ size_t CudaDriver::free_mem_size() {
|
|||
}
|
||||
|
||||
bool CudaDriver::CreateStream(DeviceStream *stream) {
|
||||
auto ret = cudaStreamCreate(reinterpret_cast<CUstream_st **>(stream));
|
||||
auto ret = cudaStreamCreateWithFlags(reinterpret_cast<CUstream_st **>(stream), cudaStreamNonBlocking);
|
||||
if (ret != cudaSuccess) {
|
||||
MS_LOG(ERROR) << "cudaStreamCreate failed, ret[" << static_cast<int>(ret) << "], " << cudaGetErrorString(ret);
|
||||
return false;
|
||||
|
|
|
@ -28,21 +28,25 @@ namespace device {
|
|||
namespace gpu {
|
||||
void AssignGpuStream(const std::shared_ptr<session::KernelGraph> &kernel_graph) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_graph);
|
||||
std::vector<CNodePtr> allreduce_cnodes;
|
||||
std::vector<CNodePtr> allreduce_kernels;
|
||||
auto execution_kernels = kernel_graph->execution_order();
|
||||
for (auto kernel : execution_kernels) {
|
||||
std::string kernel_name = AnfAlgo::GetCNodeName(kernel);
|
||||
for (auto kernel_node : execution_kernels) {
|
||||
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
if (kernel_name == kAllReduceOpName) {
|
||||
allreduce_cnodes.emplace_back(kernel);
|
||||
allreduce_kernels.emplace_back(kernel_node);
|
||||
} else {
|
||||
DeviceStream compute_stream = GPUDeviceManager::GetInstance().default_stream();
|
||||
AnfAlgo::SetNodeAttr("stream_id", MakeValue(reinterpret_cast<uintptr_t>(compute_stream)), kernel_node);
|
||||
}
|
||||
}
|
||||
if (allreduce_cnodes.size() > 1) {
|
||||
if (allreduce_kernels.size() > 1) {
|
||||
DeviceStream comm_stream = nullptr;
|
||||
GPUDeviceManager::GetInstance().CreateStream(&comm_stream);
|
||||
std::transform(allreduce_cnodes.begin(), allreduce_cnodes.end(), allreduce_cnodes.begin(), [&](CNodePtr node) {
|
||||
AnfAlgo::SetNodeAttr("stream_id", MakeValue(reinterpret_cast<uintptr_t>(comm_stream)), node);
|
||||
return node;
|
||||
});
|
||||
std::transform(
|
||||
allreduce_kernels.begin(), allreduce_kernels.end(), allreduce_kernels.begin(), [&](CNodePtr allreduce_kernel) {
|
||||
AnfAlgo::SetNodeAttr("stream_id", MakeValue(reinterpret_cast<uintptr_t>(comm_stream)), allreduce_kernel);
|
||||
return allreduce_kernel;
|
||||
});
|
||||
|
||||
std::vector<SendRecvPair> send_recv_pairs;
|
||||
FindAllReduceStreamSwitchPos(kernel_graph, &send_recv_pairs);
|
||||
|
@ -137,7 +141,7 @@ void InsertStreamSwitchNode(const std::shared_ptr<session::KernelGraph> &kernel_
|
|||
}
|
||||
// Step 3: insert stream switch CNodes into execution kernel list.
|
||||
auto execution_kernels = kernel_graph->execution_order();
|
||||
for (auto node = ordered_stream_switch_nodes.begin(); node != ordered_stream_switch_nodes.end(); node++) {
|
||||
for (auto node = ordered_stream_switch_nodes.rbegin(); node != ordered_stream_switch_nodes.rend(); node++) {
|
||||
execution_kernels.insert(execution_kernels.begin() + node->offset, node->cnode);
|
||||
}
|
||||
kernel_graph->set_execution_order(execution_kernels);
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -70,4 +70,4 @@ CNodePtr CreateStreamSwitchNode(const std::shared_ptr<session::KernelGraph> &ker
|
|||
} // namespace device
|
||||
} // namespace mindspore
|
||||
|
||||
#endif
|
||||
#endif // MINDSPORE_CCSRC_DEVICE_GPU_GPU_STREAM_ASSIGN_H_
|
||||
|
|
|
@ -0,0 +1,23 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/control/recv_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_REGULAR(Recv, KernelAttr(), RecvGpuKernel)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,66 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CONTROL_RECV_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CONTROL_RECV_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class RecvGpuKernel : public GpuKernel {
|
||||
public:
|
||||
RecvGpuKernel() {}
|
||||
~RecvGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &, const std::vector<AddressPtr> &, const std::vector<AddressPtr> &,
|
||||
uintptr_t) override {
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(cudaStreamWaitEvent(wait_stream_, wait_event_, 0), "Waiting cuda event failed.");
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
wait_stream_ = reinterpret_cast<cudaStream_t>(GetAttr<uintptr_t>(kernel_node, "wait_event_stream"));
|
||||
wait_event_ = reinterpret_cast<cudaEvent_t>(GetAttr<uintptr_t>(kernel_node, "wait_event"));
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
private:
|
||||
cudaStream_t wait_stream_{nullptr};
|
||||
cudaEvent_t wait_event_{nullptr};
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CONTROL_RECV_GPU_KERNEL_H_
|
|
@ -0,0 +1,23 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/control/send_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_REGULAR(Send, KernelAttr(), SendGpuKernel)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,66 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CONTROL_SEND_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CONTROL_SEND_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class SendGpuKernel : public GpuKernel {
|
||||
public:
|
||||
SendGpuKernel() {}
|
||||
~SendGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &, const std::vector<AddressPtr> &, const std::vector<AddressPtr> &,
|
||||
uintptr_t) override {
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(cudaEventRecord(record_event_, record_stream_), "Recording cuda event failed.");
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
record_stream_ = reinterpret_cast<cudaStream_t>(GetAttr<uintptr_t>(kernel_node, "record_event_stream"));
|
||||
record_event_ = reinterpret_cast<cudaEvent_t>(GetAttr<uintptr_t>(kernel_node, "record_event"));
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
private:
|
||||
cudaStream_t record_stream_{nullptr};
|
||||
cudaEvent_t record_event_{nullptr};
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CONTROL_SEND_GPU_KERNEL_H_
|
|
@ -124,6 +124,12 @@ class NcclGpuKernel : public GpuKernel {
|
|||
InferCommType(kernel_node);
|
||||
collective_handle_ = device::gpu::CollectiveInitializer::instance().collective_handle();
|
||||
MS_EXCEPTION_IF_NULL(collective_handle_);
|
||||
|
||||
auto comm_stream_attr = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("stream_id");
|
||||
if (comm_stream_attr) {
|
||||
comm_stream_ = reinterpret_cast<cudaStream_t>(GetValue<uintptr_t>(comm_stream_attr));
|
||||
MS_EXCEPTION_IF_NULL(comm_stream_);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue