forked from mindspore-Ecosystem/mindspore
!5690 ROIAlign kernel memory leak
Merge pull request !5690 from JonathanY/rcnn
This commit is contained in:
commit
b717a686cf
|
@ -18,15 +18,14 @@
|
|||
#include "util.cuh"
|
||||
#include "runtime/device/gpu/cuda_common.h"
|
||||
|
||||
inline __device__ int roi_cast_int(float x) { return static_cast<int>(x); }
|
||||
inline __device__ int roi_cast_int(float x) { return __float2int_rd(x); }
|
||||
inline __device__ int roi_cast_int(half x) { return __half2int_rd(x); }
|
||||
|
||||
template <typename T>
|
||||
__device__ void bilinear_interpolate(const int height, const int width, T y, T x, int *x_low, int *y_low, int *x_high,
|
||||
int *y_high, T *w1, T *w2, T *w3, T *w4) {
|
||||
// return 0 if out of map boundary
|
||||
if (y <= static_cast<T>(-1.0) || y >= static_cast<T>(height) || x <= static_cast<T>(-1.0) ||
|
||||
x >= static_cast<T>(width)) {
|
||||
if (y < static_cast<T>(-1.0) || y > static_cast<T>(height) || x < static_cast<T>(-1.0) || x > static_cast<T>(width)) {
|
||||
*w1 = *w2 = *w3 = *w4 = 0;
|
||||
*x_low = *x_high = *y_low = *y_high = -1;
|
||||
return;
|
||||
|
@ -137,16 +136,18 @@ __global__ void ROIAlignKernel(size_t size, const T *input, const T *roi_boxes,
|
|||
static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w);
|
||||
// bilinear interpolate by shifted y / x
|
||||
// calculate bilinear interpolation
|
||||
int x_low, y_low, x_high, y_high;
|
||||
int x_low = 0, y_low = 0, x_high = 0, y_high = 0;
|
||||
T w1, w2, w3, w4;
|
||||
bilinear_interpolate(height, width, y, x, &x_low, &y_low, &x_high, &y_high, &w1, &w2, &w3, &w4);
|
||||
T v1 = input[y_low * width + x_low + offset];
|
||||
T v2 = input[y_low * width + x_high + offset];
|
||||
T v3 = input[y_high * width + x_low + offset];
|
||||
T v4 = input[y_high * width + x_high + offset];
|
||||
if (x_low != -1 || x_high != -1 || y_low != -1 || y_high != -1) {
|
||||
T v1 = input[offset + y_low * width + x_low];
|
||||
T v2 = input[offset + y_low * width + x_high];
|
||||
T v3 = input[offset + y_high * width + x_low];
|
||||
T v4 = input[offset + y_high * width + x_high];
|
||||
|
||||
T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
||||
accumulate_val += val;
|
||||
T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
||||
accumulate_val += val;
|
||||
}
|
||||
}
|
||||
}
|
||||
accumulate_val /= count_points_in_grid_cell;
|
||||
|
@ -205,23 +206,25 @@ __global__ void ROIAlignGradKernel(size_t size, const T *dy, const T *roi_boxes,
|
|||
static_cast<T>(ix + .5f) * bin_size_w / static_cast<T>(roi_bin_grid_w);
|
||||
// bilinear interpolate by shifted y / x
|
||||
// calculate bilinear interpolation
|
||||
int x_low, y_low, x_high, y_high;
|
||||
int x_low = 0, y_low = 0, x_high = 0, y_high = 0;
|
||||
T w1, w2, w3, w4;
|
||||
bilinear_interpolate(height, width, y, x, &x_low, &y_low, &x_high, &y_high, &w1, &w2, &w3, &w4);
|
||||
T g1 = top_diff_this_bin * w1 / count_points_in_grid_cell;
|
||||
T g2 = top_diff_this_bin * w2 / count_points_in_grid_cell;
|
||||
T g3 = top_diff_this_bin * w3 / count_points_in_grid_cell;
|
||||
T g4 = top_diff_this_bin * w4 / count_points_in_grid_cell;
|
||||
if (x_low != -1 || x_high != -1 || y_low != -1 || y_high != -1) {
|
||||
T g1 = top_diff_this_bin * w1 / count_points_in_grid_cell;
|
||||
T g2 = top_diff_this_bin * w2 / count_points_in_grid_cell;
|
||||
T g3 = top_diff_this_bin * w3 / count_points_in_grid_cell;
|
||||
T g4 = top_diff_this_bin * w4 / count_points_in_grid_cell;
|
||||
|
||||
T *dx_1 = dx + offset + y_low * width + x_low;
|
||||
T *dx_2 = dx + offset + y_low * width + x_high;
|
||||
T *dx_3 = dx + offset + y_high * width + x_low;
|
||||
T *dx_4 = dx + offset + y_high * width + x_high;
|
||||
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
|
||||
MsAtomicAdd(dx_1, g1);
|
||||
MsAtomicAdd(dx_2, g2);
|
||||
MsAtomicAdd(dx_3, g3);
|
||||
MsAtomicAdd(dx_4, g4);
|
||||
T *dx_1 = dx + offset + y_low * width + x_low;
|
||||
T *dx_2 = dx + offset + y_low * width + x_high;
|
||||
T *dx_3 = dx + offset + y_high * width + x_low;
|
||||
T *dx_4 = dx + offset + y_high * width + x_high;
|
||||
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
|
||||
MsAtomicAdd(dx_1, g1);
|
||||
MsAtomicAdd(dx_2, g2);
|
||||
MsAtomicAdd(dx_3, g3);
|
||||
MsAtomicAdd(dx_4, g4);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -71,12 +71,12 @@ class ROIAlignGpuFwdKernel : public GpuKernel {
|
|||
}
|
||||
|
||||
// Get channels, height & width
|
||||
int batch_N = x_shape[0];
|
||||
batch_N_ = x_shape[0];
|
||||
channels_ = x_shape[1];
|
||||
height_ = x_shape[2];
|
||||
width_ = x_shape[3];
|
||||
x_shape_ = {batch_N, channels_, height_, width_};
|
||||
x_size_ = batch_N * channels_ * height_ * width_ * sizeof(T);
|
||||
x_shape_ = {batch_N_, channels_, height_, width_};
|
||||
x_size_ = batch_N_ * channels_ * height_ * width_ * sizeof(T);
|
||||
|
||||
// Get rois rows and cols
|
||||
roi_rows_ = rois_shape[0];
|
||||
|
@ -119,6 +119,7 @@ class ROIAlignGpuFwdKernel : public GpuKernel {
|
|||
|
||||
int roi_rows_;
|
||||
int roi_cols_;
|
||||
int batch_N_;
|
||||
int channels_;
|
||||
int height_;
|
||||
int width_;
|
||||
|
|
|
@ -80,6 +80,6 @@ def test_roi_align():
|
|||
roi_align = P.ROIAlign(pooled_height, pooled_width, spatial_scale, sample_num)
|
||||
output = roi_align(x, rois)
|
||||
print(output)
|
||||
expect = [[[[4.625, 0.],
|
||||
expect = [[[[8.2222, 0.],
|
||||
[0., 0.]]]]
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect, decimal=4)
|
||||
|
|
Loading…
Reference in New Issue