!21983 revert remove_redundant_depend in some network scripts

Merge pull request !21983 from huangbingjian/revert_depend
This commit is contained in:
i-robot 2021-08-18 06:23:04 +00:00 committed by Gitee
commit ae24142e05
5 changed files with 8 additions and 11 deletions

View File

@ -23,6 +23,7 @@ from mindspore import ParameterTuple
from mindspore.common.tensor import Tensor
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.train.callback import Callback
__all__ = ['LossCallBack', 'WithLossCell', 'TrainOneStepCell']
@ -143,5 +144,4 @@ class TrainOneStepCell(nn.Cell):
grads = self.grad(self.network, weights)(img, gt_text, gt_kernels, training_mask, self.sens)
if self.reducer_flag:
grads = self.grad_reducer(grads)
self.optimizer(grads)
return loss
return F.depend(loss, self.optimizer(grads))

View File

@ -678,8 +678,7 @@ class TrainingWrapper(nn.Cell):
if self.reducer_flag:
# apply grad reducer on grads
grads = self.grad_reducer(grads)
self.optimizer(grads)
return loss
return F.depend(loss, self.optimizer(grads))
class YoloBoxScores(nn.Cell):

View File

@ -18,6 +18,7 @@ from mindspore.common.parameter import ParameterTuple
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops import operations as P
@ -149,8 +150,7 @@ class TrainOneStepCell(nn.Cell):
loss = self.network(feature, biases)
sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
grads = self.grad(self.network, weights)(feature, biases, sens)
self.optimizer(grads)
return loss
return F.depend(loss, self.optimizer(grads))
class TrainGAT(nn.Cell):

View File

@ -137,6 +137,4 @@ class FastTextTrainOneStepCell(nn.Cell):
if self.reducer_flag:
# apply grad reducer on grads
grads = self.grad_reducer(grads)
self.optimizer(grads)
return loss
return F.depend(loss, self.optimizer(grads))

View File

@ -19,6 +19,7 @@ import numpy as np
from sklearn.metrics import roc_auc_score
import mindspore.common.dtype as mstype
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore.nn import Dropout
from mindspore.nn.optim import Adam
@ -332,8 +333,7 @@ class TrainStepWrap(nn.Cell):
loss = self.network(batch_ids, batch_wts, label)
sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens) #
grads = self.grad(self.network, weights)(batch_ids, batch_wts, label, sens)
self.optimizer(grads)
return loss
return F.depend(loss, self.optimizer(grads))
class PredictWithSigmoid(nn.Cell):