!26960 [MSLITE][DEVELOP] fix bug of some op attr check

Merge pull request !26960 from yangruoqi713/master_fuzz
This commit is contained in:
i-robot 2021-11-30 06:37:00 +00:00 committed by Gitee
commit acbaff17f7
8 changed files with 29 additions and 10 deletions

View File

@ -65,11 +65,7 @@ int ConcatInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC *
for (size_t i = 1; i < inputs_size; ++i) { for (size_t i = 1; i < inputs_size; ++i) {
size_t input_i_shape_size = inputs[i]->shape_size_; size_t input_i_shape_size = inputs[i]->shape_size_;
if (input_i_shape_size != input0_shape_size) { if (input_i_shape_size != input0_shape_size) {
if (input_i_shape_size != 0) {
return NNACL_PARAM_INVALID; return NNACL_PARAM_INVALID;
} else {
continue;
}
} }
int shape_tmp[MAX_SHAPE_SIZE] = {0}; int shape_tmp[MAX_SHAPE_SIZE] = {0};
size_t shape_tmp_size = 0; size_t shape_tmp_size = 0;

View File

@ -16,6 +16,7 @@
#include "nnacl/infer/crop_infer.h" #include "nnacl/infer/crop_infer.h"
#include "nnacl/infer/infer_register.h" #include "nnacl/infer/infer_register.h"
#include "nnacl/crop_parameter.h"
int CropInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC **outputs, size_t outputs_size, int CropInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC **outputs, size_t outputs_size,
OpParameter *parameter) { OpParameter *parameter) {
@ -24,6 +25,13 @@ int CropInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC **o
return check_ret; return check_ret;
} }
size_t input_shape_size = inputs[0]->shape_size_;
CropParameter *param = (CropParameter *)parameter;
int64_t axis = param->axis_ < 0 ? param->axis_ + (int64_t)input_shape_size : param->axis_;
if (axis < 0 || axis >= input_shape_size) {
return NNACL_ERR;
}
SetDataTypeFormat(outputs[0], inputs[0]); SetDataTypeFormat(outputs[0], inputs[0]);
if (!InferFlag(inputs, inputs_size)) { if (!InferFlag(inputs, inputs_size)) {
return NNACL_INFER_INVALID; return NNACL_INFER_INVALID;

View File

@ -49,7 +49,7 @@ int CropBaseCPUKernel::ReSize() {
int CropBaseCPUKernel::PadOffset(int input_dim, CropParameter *crop_para) const { int CropBaseCPUKernel::PadOffset(int input_dim, CropParameter *crop_para) const {
auto axis = crop_para->axis_; auto axis = crop_para->axis_;
auto offsets_size = crop_para->offset_size_; auto offsets_size = crop_para->offset_size_;
MS_ASSERT(axis <= input_dim); MS_CHECK_TRUE_MSG(axis < input_dim, RET_ERROR, "The axis is invalid.");
if (offsets_size > 1) { if (offsets_size > 1) {
MS_CHECK_TRUE_MSG(axis + offsets_size == input_dim, RET_ERROR, "The axis and offsets is invalid"); MS_CHECK_TRUE_MSG(axis + offsets_size == input_dim, RET_ERROR, "The axis and offsets is invalid");
} }

View File

@ -105,7 +105,7 @@ int GatherNdCPUKernel::InitOffset() {
(void)memset(in_offset_, 0, count_ * sizeof(int)); (void)memset(in_offset_, 0, count_ * sizeof(int));
for (int j = 0; j < count_; ++j) { for (int j = 0; j < count_; ++j) {
for (int k = 0; k < idx_lastshape; ++k) { for (int k = 0; k < idx_lastshape; ++k) {
if (indices_ptr[j * idx_stride + k] < in_shape[k]) { if (indices_ptr[j * idx_stride + k] >= 0 && indices_ptr[j * idx_stride + k] < in_shape[k]) {
in_offset_[j] += indices_ptr[j * idx_stride + k] * in_stride.at(k); in_offset_[j] += indices_ptr[j * idx_stride + k] * in_stride.at(k);
} else { } else {
MS_LOG(ERROR) << name() << " indices value invalid!"; MS_LOG(ERROR) << name() << " indices value invalid!";

View File

@ -312,7 +312,11 @@ int MatmulFp32BaseCPUKernel::Prepare() {
CHECK_LESS_RETURN(in_tensors_.size(), C2NUM); CHECK_LESS_RETURN(in_tensors_.size(), C2NUM);
CHECK_LESS_RETURN(out_tensors_.size(), 1); CHECK_LESS_RETURN(out_tensors_.size(), 1);
init_global_variable(); init_global_variable();
MS_CHECK_INT_MUL_NOT_OVERFLOW(a_batch_, params_->row_align_, RET_ERROR);
MS_CHECK_INT_MUL_NOT_OVERFLOW(a_batch_ * params_->row_align_, params_->deep_, RET_ERROR);
matrix_a_pack_size_ = a_batch_ * params_->row_align_ * params_->deep_; matrix_a_pack_size_ = a_batch_ * params_->row_align_ * params_->deep_;
MS_CHECK_INT_MUL_NOT_OVERFLOW(a_batch_, params_->col_align_, RET_ERROR);
MS_CHECK_INT_MUL_NOT_OVERFLOW(a_batch_ * params_->col_align_, params_->deep_, RET_ERROR);
matrix_b_pack_size_ = b_batch_ * params_->col_align_ * params_->deep_; matrix_b_pack_size_ = b_batch_ * params_->col_align_ * params_->deep_;
if (matrix_a_pack_size_ < 0 || matrix_b_pack_size_ < 0) { if (matrix_a_pack_size_ < 0 || matrix_b_pack_size_ < 0) {
MS_LOG(ERROR) << "Matrix pack size is negative " MS_LOG(ERROR) << "Matrix pack size is negative "

View File

@ -37,7 +37,11 @@ int ReverseCPUKernel::Stride(int index) {
int ReverseCPUKernel::ReSize() { int ReverseCPUKernel::ReSize() {
// trans negative to positive axis // trans negative to positive axis
UpdateAxisInfo(); auto ret = UpdateAxisInfo();
if (ret != RET_OK) {
MS_LOG(ERROR) << "Get axis failed.";
return ret;
}
data_size_ = in_tensors_.at(0)->ElementsNum(); data_size_ = in_tensors_.at(0)->ElementsNum();
thread_sz_count_ = MSMIN(op_parameter_->thread_num_, data_size_); thread_sz_count_ = MSMIN(op_parameter_->thread_num_, data_size_);
@ -146,14 +150,19 @@ int ReverseCPUKernel::Run() {
return RET_OK; return RET_OK;
} }
void ReverseCPUKernel::UpdateAxisInfo() { int ReverseCPUKernel::UpdateAxisInfo() {
auto reverse_param = reinterpret_cast<ReverseParameter *>(op_parameter_); auto reverse_param = reinterpret_cast<ReverseParameter *>(op_parameter_);
int in_shape_len = static_cast<int>(in_tensors_.front()->shape().size()); int in_shape_len = static_cast<int>(in_tensors_.front()->shape().size());
for (int i = 0; i < reverse_param->num_axis_; ++i) { for (int i = 0; i < reverse_param->num_axis_; ++i) {
if (reverse_param->axis_[i] < 0) { if (reverse_param->axis_[i] < 0) {
reverse_param->axis_[i] += in_shape_len; reverse_param->axis_[i] += in_shape_len;
} }
if (reverse_param->axis_[i] < 0 || reverse_param->axis_[i] >= in_shape_len) {
MS_LOG(ERROR) << "Invalid axis.";
return RET_ERROR;
} }
}
return RET_OK;
} }
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ReverseV2, LiteKernelCreator<ReverseCPUKernel>) REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ReverseV2, LiteKernelCreator<ReverseCPUKernel>)

View File

@ -42,7 +42,7 @@ class ReverseCPUKernel : public InnerKernel {
int DoReverse(int task_id); int DoReverse(int task_id);
private: private:
void UpdateAxisInfo(); int UpdateAxisInfo();
int thread_sz_count_ = 0; int thread_sz_count_ = 0;
int thread_sz_stride_ = 0; int thread_sz_stride_ = 0;
int data_size_ = 0; int data_size_ = 0;

View File

@ -51,6 +51,7 @@ int SoftmaxInt8CPUKernel::Prepare() {
MS_ASSERT(input_tensor != nullptr); MS_ASSERT(input_tensor != nullptr);
auto in_quant_args = input_tensor->quant_params(); auto in_quant_args = input_tensor->quant_params();
CHECK_LESS_RETURN(in_quant_args.size(), 1);
quant_param_->in_quant_args_.scale_ = static_cast<float>(in_quant_args.front().scale); quant_param_->in_quant_args_.scale_ = static_cast<float>(in_quant_args.front().scale);
quant_param_->in_quant_args_.zp_ = -in_quant_args.front().zeroPoint; quant_param_->in_quant_args_.zp_ = -in_quant_args.front().zeroPoint;
@ -58,6 +59,7 @@ int SoftmaxInt8CPUKernel::Prepare() {
MS_ASSERT(out_tensor != nullptr); MS_ASSERT(out_tensor != nullptr);
auto out_quant_args = out_tensor->quant_params(); auto out_quant_args = out_tensor->quant_params();
CHECK_LESS_RETURN(out_quant_args.size(), 1);
quant_param_->out_quant_arg_.scale_ = static_cast<float>(out_quant_args.front().scale); quant_param_->out_quant_arg_.scale_ = static_cast<float>(out_quant_args.front().scale);
quant_param_->out_quant_arg_.zp_ = -out_quant_args.front().zeroPoint; quant_param_->out_quant_arg_.zp_ = -out_quant_args.front().zeroPoint;
quant_param_->output_activation_min_ = std::numeric_limits<int8_t>::min(); quant_param_->output_activation_min_ = std::numeric_limits<int8_t>::min();