forked from mindspore-Ecosystem/mindspore
!26960 [MSLITE][DEVELOP] fix bug of some op attr check
Merge pull request !26960 from yangruoqi713/master_fuzz
This commit is contained in:
commit
acbaff17f7
|
@ -65,11 +65,7 @@ int ConcatInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC *
|
||||||
for (size_t i = 1; i < inputs_size; ++i) {
|
for (size_t i = 1; i < inputs_size; ++i) {
|
||||||
size_t input_i_shape_size = inputs[i]->shape_size_;
|
size_t input_i_shape_size = inputs[i]->shape_size_;
|
||||||
if (input_i_shape_size != input0_shape_size) {
|
if (input_i_shape_size != input0_shape_size) {
|
||||||
if (input_i_shape_size != 0) {
|
|
||||||
return NNACL_PARAM_INVALID;
|
return NNACL_PARAM_INVALID;
|
||||||
} else {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
int shape_tmp[MAX_SHAPE_SIZE] = {0};
|
int shape_tmp[MAX_SHAPE_SIZE] = {0};
|
||||||
size_t shape_tmp_size = 0;
|
size_t shape_tmp_size = 0;
|
||||||
|
|
|
@ -16,6 +16,7 @@
|
||||||
|
|
||||||
#include "nnacl/infer/crop_infer.h"
|
#include "nnacl/infer/crop_infer.h"
|
||||||
#include "nnacl/infer/infer_register.h"
|
#include "nnacl/infer/infer_register.h"
|
||||||
|
#include "nnacl/crop_parameter.h"
|
||||||
|
|
||||||
int CropInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC **outputs, size_t outputs_size,
|
int CropInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC **outputs, size_t outputs_size,
|
||||||
OpParameter *parameter) {
|
OpParameter *parameter) {
|
||||||
|
@ -24,6 +25,13 @@ int CropInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC **o
|
||||||
return check_ret;
|
return check_ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
size_t input_shape_size = inputs[0]->shape_size_;
|
||||||
|
CropParameter *param = (CropParameter *)parameter;
|
||||||
|
int64_t axis = param->axis_ < 0 ? param->axis_ + (int64_t)input_shape_size : param->axis_;
|
||||||
|
if (axis < 0 || axis >= input_shape_size) {
|
||||||
|
return NNACL_ERR;
|
||||||
|
}
|
||||||
|
|
||||||
SetDataTypeFormat(outputs[0], inputs[0]);
|
SetDataTypeFormat(outputs[0], inputs[0]);
|
||||||
if (!InferFlag(inputs, inputs_size)) {
|
if (!InferFlag(inputs, inputs_size)) {
|
||||||
return NNACL_INFER_INVALID;
|
return NNACL_INFER_INVALID;
|
||||||
|
|
|
@ -49,7 +49,7 @@ int CropBaseCPUKernel::ReSize() {
|
||||||
int CropBaseCPUKernel::PadOffset(int input_dim, CropParameter *crop_para) const {
|
int CropBaseCPUKernel::PadOffset(int input_dim, CropParameter *crop_para) const {
|
||||||
auto axis = crop_para->axis_;
|
auto axis = crop_para->axis_;
|
||||||
auto offsets_size = crop_para->offset_size_;
|
auto offsets_size = crop_para->offset_size_;
|
||||||
MS_ASSERT(axis <= input_dim);
|
MS_CHECK_TRUE_MSG(axis < input_dim, RET_ERROR, "The axis is invalid.");
|
||||||
if (offsets_size > 1) {
|
if (offsets_size > 1) {
|
||||||
MS_CHECK_TRUE_MSG(axis + offsets_size == input_dim, RET_ERROR, "The axis and offsets is invalid");
|
MS_CHECK_TRUE_MSG(axis + offsets_size == input_dim, RET_ERROR, "The axis and offsets is invalid");
|
||||||
}
|
}
|
||||||
|
|
|
@ -105,7 +105,7 @@ int GatherNdCPUKernel::InitOffset() {
|
||||||
(void)memset(in_offset_, 0, count_ * sizeof(int));
|
(void)memset(in_offset_, 0, count_ * sizeof(int));
|
||||||
for (int j = 0; j < count_; ++j) {
|
for (int j = 0; j < count_; ++j) {
|
||||||
for (int k = 0; k < idx_lastshape; ++k) {
|
for (int k = 0; k < idx_lastshape; ++k) {
|
||||||
if (indices_ptr[j * idx_stride + k] < in_shape[k]) {
|
if (indices_ptr[j * idx_stride + k] >= 0 && indices_ptr[j * idx_stride + k] < in_shape[k]) {
|
||||||
in_offset_[j] += indices_ptr[j * idx_stride + k] * in_stride.at(k);
|
in_offset_[j] += indices_ptr[j * idx_stride + k] * in_stride.at(k);
|
||||||
} else {
|
} else {
|
||||||
MS_LOG(ERROR) << name() << " indices value invalid!";
|
MS_LOG(ERROR) << name() << " indices value invalid!";
|
||||||
|
|
|
@ -312,7 +312,11 @@ int MatmulFp32BaseCPUKernel::Prepare() {
|
||||||
CHECK_LESS_RETURN(in_tensors_.size(), C2NUM);
|
CHECK_LESS_RETURN(in_tensors_.size(), C2NUM);
|
||||||
CHECK_LESS_RETURN(out_tensors_.size(), 1);
|
CHECK_LESS_RETURN(out_tensors_.size(), 1);
|
||||||
init_global_variable();
|
init_global_variable();
|
||||||
|
MS_CHECK_INT_MUL_NOT_OVERFLOW(a_batch_, params_->row_align_, RET_ERROR);
|
||||||
|
MS_CHECK_INT_MUL_NOT_OVERFLOW(a_batch_ * params_->row_align_, params_->deep_, RET_ERROR);
|
||||||
matrix_a_pack_size_ = a_batch_ * params_->row_align_ * params_->deep_;
|
matrix_a_pack_size_ = a_batch_ * params_->row_align_ * params_->deep_;
|
||||||
|
MS_CHECK_INT_MUL_NOT_OVERFLOW(a_batch_, params_->col_align_, RET_ERROR);
|
||||||
|
MS_CHECK_INT_MUL_NOT_OVERFLOW(a_batch_ * params_->col_align_, params_->deep_, RET_ERROR);
|
||||||
matrix_b_pack_size_ = b_batch_ * params_->col_align_ * params_->deep_;
|
matrix_b_pack_size_ = b_batch_ * params_->col_align_ * params_->deep_;
|
||||||
if (matrix_a_pack_size_ < 0 || matrix_b_pack_size_ < 0) {
|
if (matrix_a_pack_size_ < 0 || matrix_b_pack_size_ < 0) {
|
||||||
MS_LOG(ERROR) << "Matrix pack size is negative "
|
MS_LOG(ERROR) << "Matrix pack size is negative "
|
||||||
|
|
|
@ -37,7 +37,11 @@ int ReverseCPUKernel::Stride(int index) {
|
||||||
|
|
||||||
int ReverseCPUKernel::ReSize() {
|
int ReverseCPUKernel::ReSize() {
|
||||||
// trans negative to positive axis
|
// trans negative to positive axis
|
||||||
UpdateAxisInfo();
|
auto ret = UpdateAxisInfo();
|
||||||
|
if (ret != RET_OK) {
|
||||||
|
MS_LOG(ERROR) << "Get axis failed.";
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
data_size_ = in_tensors_.at(0)->ElementsNum();
|
data_size_ = in_tensors_.at(0)->ElementsNum();
|
||||||
thread_sz_count_ = MSMIN(op_parameter_->thread_num_, data_size_);
|
thread_sz_count_ = MSMIN(op_parameter_->thread_num_, data_size_);
|
||||||
|
@ -146,14 +150,19 @@ int ReverseCPUKernel::Run() {
|
||||||
return RET_OK;
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
void ReverseCPUKernel::UpdateAxisInfo() {
|
int ReverseCPUKernel::UpdateAxisInfo() {
|
||||||
auto reverse_param = reinterpret_cast<ReverseParameter *>(op_parameter_);
|
auto reverse_param = reinterpret_cast<ReverseParameter *>(op_parameter_);
|
||||||
int in_shape_len = static_cast<int>(in_tensors_.front()->shape().size());
|
int in_shape_len = static_cast<int>(in_tensors_.front()->shape().size());
|
||||||
for (int i = 0; i < reverse_param->num_axis_; ++i) {
|
for (int i = 0; i < reverse_param->num_axis_; ++i) {
|
||||||
if (reverse_param->axis_[i] < 0) {
|
if (reverse_param->axis_[i] < 0) {
|
||||||
reverse_param->axis_[i] += in_shape_len;
|
reverse_param->axis_[i] += in_shape_len;
|
||||||
}
|
}
|
||||||
|
if (reverse_param->axis_[i] < 0 || reverse_param->axis_[i] >= in_shape_len) {
|
||||||
|
MS_LOG(ERROR) << "Invalid axis.";
|
||||||
|
return RET_ERROR;
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
return RET_OK;
|
||||||
}
|
}
|
||||||
|
|
||||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ReverseV2, LiteKernelCreator<ReverseCPUKernel>)
|
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ReverseV2, LiteKernelCreator<ReverseCPUKernel>)
|
||||||
|
|
|
@ -42,7 +42,7 @@ class ReverseCPUKernel : public InnerKernel {
|
||||||
int DoReverse(int task_id);
|
int DoReverse(int task_id);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
void UpdateAxisInfo();
|
int UpdateAxisInfo();
|
||||||
int thread_sz_count_ = 0;
|
int thread_sz_count_ = 0;
|
||||||
int thread_sz_stride_ = 0;
|
int thread_sz_stride_ = 0;
|
||||||
int data_size_ = 0;
|
int data_size_ = 0;
|
||||||
|
|
|
@ -51,6 +51,7 @@ int SoftmaxInt8CPUKernel::Prepare() {
|
||||||
MS_ASSERT(input_tensor != nullptr);
|
MS_ASSERT(input_tensor != nullptr);
|
||||||
|
|
||||||
auto in_quant_args = input_tensor->quant_params();
|
auto in_quant_args = input_tensor->quant_params();
|
||||||
|
CHECK_LESS_RETURN(in_quant_args.size(), 1);
|
||||||
quant_param_->in_quant_args_.scale_ = static_cast<float>(in_quant_args.front().scale);
|
quant_param_->in_quant_args_.scale_ = static_cast<float>(in_quant_args.front().scale);
|
||||||
quant_param_->in_quant_args_.zp_ = -in_quant_args.front().zeroPoint;
|
quant_param_->in_quant_args_.zp_ = -in_quant_args.front().zeroPoint;
|
||||||
|
|
||||||
|
@ -58,6 +59,7 @@ int SoftmaxInt8CPUKernel::Prepare() {
|
||||||
MS_ASSERT(out_tensor != nullptr);
|
MS_ASSERT(out_tensor != nullptr);
|
||||||
|
|
||||||
auto out_quant_args = out_tensor->quant_params();
|
auto out_quant_args = out_tensor->quant_params();
|
||||||
|
CHECK_LESS_RETURN(out_quant_args.size(), 1);
|
||||||
quant_param_->out_quant_arg_.scale_ = static_cast<float>(out_quant_args.front().scale);
|
quant_param_->out_quant_arg_.scale_ = static_cast<float>(out_quant_args.front().scale);
|
||||||
quant_param_->out_quant_arg_.zp_ = -out_quant_args.front().zeroPoint;
|
quant_param_->out_quant_arg_.zp_ = -out_quant_args.front().zeroPoint;
|
||||||
quant_param_->output_activation_min_ = std::numeric_limits<int8_t>::min();
|
quant_param_->output_activation_min_ = std::numeric_limits<int8_t>::min();
|
||||||
|
|
Loading…
Reference in New Issue