forked from mindspore-Ecosystem/mindspore
!26505 [assistant] [ops] [I48O8K] add new array operator RightShift
Merge pull request !26505 from 王超/rightshift
This commit is contained in:
commit
abf0c022a9
|
@ -0,0 +1,157 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "plugin/device/cpu/kernel/right_shift_cpu_kernel.h"
|
||||
#include <vector>
|
||||
#include <cmath>
|
||||
#include <type_traits>
|
||||
#include <memory>
|
||||
#include <functional>
|
||||
#include "plugin/device/cpu/hal/device/cpu_device_address.h"
|
||||
#include "plugin/device/cpu/kernel/cpu_kernel.h"
|
||||
#include "plugin/device/cpu/kernel/arithmetic_cpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
const size_t kRightShiftInputsNum = 2;
|
||||
const size_t kRightShiftOutputsNum = 1;
|
||||
} // namespace
|
||||
|
||||
void RightShiftCpuKernelMod::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
size_t input_num = common::AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
CHECK_KERNEL_INPUTS_NUM(input_num, kRightShiftInputsNum, common::AnfAlgo::GetCNodeName(kernel_node));
|
||||
size_t output_num = common::AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
CHECK_KERNEL_OUTPUTS_NUM(output_num, kRightShiftOutputsNum, common::AnfAlgo::GetCNodeName(kernel_node));
|
||||
input_type_1_ = AnfAlgo::GetInputDeviceDataType(kernel_node, 0);
|
||||
input_type_2_ = AnfAlgo::GetOutputDeviceDataType(kernel_node, 0);
|
||||
if (input_type_1_ != input_type_2_) {
|
||||
MS_LOG(EXCEPTION) << "input1 and input2 must have the same type.";
|
||||
}
|
||||
input_shape_1_ = common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_shape_2_ = common::AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
output_shape_ = common::AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
}
|
||||
|
||||
bool RightShiftCpuKernelMod::Launch(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> & /* workspace */,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
if (input_type_1_ == kNumberTypeInt8) {
|
||||
return IntCompute<int8_t>(inputs, outputs);
|
||||
} else if (input_type_1_ == kNumberTypeInt16) {
|
||||
return IntCompute<int16_t>(inputs, outputs);
|
||||
} else if (input_type_1_ == kNumberTypeInt32) {
|
||||
return IntCompute<int32_t>(inputs, outputs);
|
||||
} else if (input_type_1_ == kNumberTypeInt64) {
|
||||
return IntCompute<int64_t>(inputs, outputs);
|
||||
} else if (input_type_1_ == kNumberTypeUInt8) {
|
||||
return UIntCompute<uint8_t>(inputs, outputs);
|
||||
} else if (input_type_1_ == kNumberTypeUInt16) {
|
||||
return UIntCompute<uint16_t>(inputs, outputs);
|
||||
} else if (input_type_1_ == kNumberTypeUInt32) {
|
||||
return UIntCompute<uint32_t>(inputs, outputs);
|
||||
} else if (input_type_1_ == kNumberTypeUInt64) {
|
||||
return UIntCompute<uint64_t>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "For '" << kernel_name_
|
||||
<< "', the type of 'x' should be int8, int16, int32, int64, uint8, uint16, uint32, uint64, "
|
||||
"but got "
|
||||
<< TypeIdLabel(input_type_1_);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool RightShiftCpuKernelMod::IntCompute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||
auto *input1 = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
const auto *input2 = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto *output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
if (output_shape_.size() == 0) {
|
||||
(void)output_shape_.insert(output_shape_.begin(), 1);
|
||||
}
|
||||
size_t output_size_ = 1;
|
||||
for (size_t i = 0; i < output_shape_.size(); ++i) {
|
||||
output_size_ *= output_shape_[i];
|
||||
}
|
||||
BroadcastIterator base_iter(input_shape_1_, input_shape_2_, output_shape_);
|
||||
auto task = [&input1, &input2, &output, &base_iter](size_t start, size_t end) {
|
||||
auto iter = base_iter;
|
||||
iter.SetPos(start);
|
||||
for (size_t i = start; i < end; i++) {
|
||||
T y_val = (input2[iter.GetInputPosB()]);
|
||||
T bit_val = static_cast<T>(sizeof(T) * 8 - 1);
|
||||
T zero = static_cast<T>(0);
|
||||
if (y_val <= zero) {
|
||||
y_val = zero;
|
||||
} else if (y_val > bit_val) {
|
||||
y_val = bit_val;
|
||||
}
|
||||
output[i] = static_cast<T>(input1[iter.GetInputPosA()] >> y_val);
|
||||
iter.GenNextPos();
|
||||
}
|
||||
};
|
||||
ParallelLaunchAutoSearch(task, output_size_, this, ¶llel_search_info_);
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool RightShiftCpuKernelMod::UIntCompute(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
auto *input1 = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
const auto *input2 = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto *output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
if (output_shape_.size() == 0) {
|
||||
(void)output_shape_.insert(output_shape_.begin(), 1);
|
||||
}
|
||||
size_t output_size_ = 1;
|
||||
for (size_t i = 0; i < output_shape_.size(); ++i) {
|
||||
output_size_ *= output_shape_[i];
|
||||
}
|
||||
BroadcastIterator base_iter(input_shape_1_, input_shape_2_, output_shape_);
|
||||
auto task = [&input1, &input2, &output, &base_iter](size_t start, size_t end) {
|
||||
auto iter = base_iter;
|
||||
iter.SetPos(start);
|
||||
for (size_t i = start; i < end; i++) {
|
||||
T y_val = (input2[iter.GetInputPosB()]);
|
||||
T bit_val = static_cast<T>(sizeof(T) * 8 - 1);
|
||||
if (y_val > bit_val) {
|
||||
y_val = bit_val;
|
||||
}
|
||||
output[i] = static_cast<T>(input1[iter.GetInputPosA()] >> y_val);
|
||||
iter.GenNextPos();
|
||||
}
|
||||
};
|
||||
ParallelLaunchAutoSearch(task, output_size_, this, ¶llel_search_info_);
|
||||
return true;
|
||||
}
|
||||
|
||||
std::vector<KernelAttr> RightShiftCpuKernelMod::GetOpSupport() {
|
||||
static std::vector<KernelAttr> support_list = {
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
KernelAttr().AddInputAttr(kNumberTypeUInt8).AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
KernelAttr().AddInputAttr(kNumberTypeUInt16).AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
|
||||
KernelAttr().AddInputAttr(kNumberTypeUInt32).AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeUInt32),
|
||||
KernelAttr().AddInputAttr(kNumberTypeUInt64).AddInputAttr(kNumberTypeUInt64).AddOutputAttr(kNumberTypeUInt64)};
|
||||
return support_list;
|
||||
}
|
||||
|
||||
MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, RightShift, RightShiftCpuKernelMod);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,56 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RIGHT_SHIFT_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RIGHT_SHIFT_CPU_KERNEL_H_
|
||||
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
#include "plugin/device/cpu/kernel/cpu_kernel.h"
|
||||
#include "plugin/factory/ms_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class RightShiftCpuKernelMod : public NativeCpuKernelMod {
|
||||
public:
|
||||
RightShiftCpuKernelMod() = default;
|
||||
~RightShiftCpuKernelMod() override = default;
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
protected:
|
||||
std::vector<KernelAttr> GetOpSupport() override;
|
||||
|
||||
private:
|
||||
TypeId input_type_1_{kTypeUnknown};
|
||||
TypeId input_type_2_{kTypeUnknown};
|
||||
std::vector<size_t> input_shape_1_;
|
||||
std::vector<size_t> input_shape_2_;
|
||||
std::vector<size_t> output_shape_;
|
||||
template <typename T>
|
||||
bool IntCompute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
template <typename T>
|
||||
bool UIntCompute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RIGHT_SHIFT_CPU_KERNEL_H_
|
|
@ -121,6 +121,7 @@ constexpr auto kOnes = "Ones";
|
|||
constexpr auto kOnesLike = "OnesLike";
|
||||
constexpr auto kIdentity = "Identity";
|
||||
constexpr auto kConcat = "Concat";
|
||||
constexpr auto kRightShift = "RightShift";
|
||||
constexpr auto kDiag = "Diag";
|
||||
constexpr auto kDiagPart = "DiagPart";
|
||||
constexpr auto kDynamicBroadcastGradientArgs = "DynamicBroadcastGradientArgs";
|
||||
|
@ -373,6 +374,7 @@ GVAR_DEF(PrimitivePtr, kPrimLstsq, std::make_shared<Primitive>(kLstsq));
|
|||
GVAR_DEF(PrimitivePtr, kPrimLowerBound, std::make_shared<Primitive>(kLowerBound));
|
||||
GVAR_DEF(PrimitivePtr, kPrimUpperBound, std::make_shared<Primitive>(kUpperBound));
|
||||
GVAR_DEF(PrimitivePtr, kPrimCummax, std::make_shared<Primitive>(kCummax));
|
||||
GVAR_DEF(PrimitivePtr, kPrimRightShift, std::make_shared<Primitive>(kRightShift));
|
||||
GVAR_DEF(PrimitivePtr, kPrimTril, std::make_shared<Primitive>(kTril));
|
||||
|
||||
// image
|
||||
|
|
|
@ -0,0 +1,75 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "ops/rightshift.h"
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <set>
|
||||
#include "abstract/abstract_value.h"
|
||||
#include "ops/op_utils.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
#include "abstract/primitive_infer_map.h"
|
||||
#include "ops/primitive_c.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr RightShiftInferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
const int64_t max_dim = 8;
|
||||
auto in_shape_x = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
|
||||
auto in_shape_y = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[1]->BuildShape())[kShape];
|
||||
(void)CheckAndConvertUtils::CheckInteger("The dimension of RightShift input", SizeToLong(in_shape_x.size()),
|
||||
kLessThan, max_dim, prim_name);
|
||||
(void)CheckAndConvertUtils::CheckInteger("The dimension of RightShift input", SizeToLong(in_shape_y.size()),
|
||||
kLessThan, max_dim, prim_name);
|
||||
return BroadCastInferShape(prim_name, input_args);
|
||||
}
|
||||
|
||||
TypePtr RightShiftInferType(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto prim_name = primitive->name();
|
||||
auto x = CheckAndConvertUtils::CheckArgs<abstract::AbstractTensor>(prim_name, input_args, 0);
|
||||
auto y = CheckAndConvertUtils::CheckArgs<abstract::AbstractTensor>(prim_name, input_args, 1);
|
||||
(void)abstract::CheckDtypeSame(prim_name, x, y);
|
||||
auto input_type = input_args[0]->BuildType();
|
||||
MS_EXCEPTION_IF_NULL(input_type);
|
||||
if (!input_type->isa<TensorType>()) {
|
||||
MS_EXCEPTION(TypeError) << "The " << prim_name << "'s"
|
||||
<< " input must be tensor type but got " << input_type->ToString();
|
||||
}
|
||||
const std::set<TypePtr> valid_types = {kInt8, kInt16, kInt32, kInt64, kUInt8, kUInt16, kUInt32, kUInt64};
|
||||
(void)CheckAndConvertUtils::CheckTensorTypeValid("x", input_type, valid_types, prim_name);
|
||||
return input_type;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
MIND_API_BASE_IMPL(RightShift, PrimitiveC, BaseOperator);
|
||||
AbstractBasePtr RightShiftInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
const int64_t kInputsNum = 2;
|
||||
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, kInputsNum, primitive->name());
|
||||
auto infer_type = RightShiftInferType(primitive, input_args);
|
||||
auto infer_shape = RightShiftInferShape(primitive, input_args);
|
||||
return abstract::MakeAbstract(infer_shape, infer_type);
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(RightShift, prim::kPrimRightShift, RightShiftInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,43 @@
|
|||
/**
|
||||
* Copyright 2022 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CORE_OPS_RIGHTSHIFT_H_
|
||||
#define MINDSPORE_CORE_OPS_RIGHTSHIFT_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "ops/primitive_c.h"
|
||||
#include "abstract/abstract_value.h"
|
||||
#include "utils/check_convert_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
constexpr auto kNameRightShift = "RightShift";
|
||||
/// \brief Shift x to the right by y in element-wise.
|
||||
/// Refer to Python API @ref mindspore.ops.RightShift for more details.
|
||||
class MIND_API RightShift : public BaseOperator {
|
||||
public:
|
||||
MIND_API_BASE_MEMBER(RightShift);
|
||||
/// \brief Constructor.
|
||||
RightShift() : BaseOperator(kNameRightShift) { InitIOName({"input_x", "input_y"}, {"output"}); }
|
||||
/// \brief Init.
|
||||
void Init() {}
|
||||
};
|
||||
abstract::AbstractBasePtr RightShiftInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
using PrimRightShift = std::shared_ptr<RightShift>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CORE_OPS_RIGHTSHIFT_H_
|
|
@ -133,4 +133,5 @@ from .priority_replay_buffer import _prb_create_op_cpu
|
|||
from .priority_replay_buffer import _prb_push_op_cpu
|
||||
from .priority_replay_buffer import _prb_sample_op_cpu
|
||||
from .priority_replay_buffer import _prb_update_op_cpu
|
||||
from .right_shift import _right_shift_aicpu
|
||||
from .tril import _tril_aicpu
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""RightShift op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
right_shift_op_info = AiCPURegOp("RightShift") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "input_x", "required") \
|
||||
.input(1, "input_y", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U64_Default, DataType.U64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(right_shift_op_info)
|
||||
def _right_shift_aicpu():
|
||||
"""rightshift aicpu register"""
|
||||
return
|
|
@ -7274,6 +7274,43 @@ class Cummax(Primitive):
|
|||
self.init_prim_io_names(inputs=['x'], outputs=['y', 'indices'])
|
||||
|
||||
|
||||
class RightShift(Primitive):
|
||||
r"""
|
||||
Shift the value of each position of the tensor to the right several bits.
|
||||
The inputs are two tensors, dtypes of them must be consistent, and the
|
||||
shapes of them could be broadcast.
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{aligned}
|
||||
&out_{i} =x_{i} >> y_{i}
|
||||
\end{aligned}
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The target tensor, will be shifted to the right
|
||||
by y in element-wise.
|
||||
- **input_y** (Tensor) - The tensor must have the same type as input_x.
|
||||
|
||||
Outputs:
|
||||
- **output** (Tensor) - The output tensor, has the same type as input_x.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input_x` or `input_y` is not tensor.
|
||||
TypeError: If `input_x` and `input_y` could not be broadcast.
|
||||
>>> rightshift = ops.RightShift()
|
||||
>>> input_x = Tensor(np.array([1, 2, 3]).astype(np.uint8))
|
||||
>>> input_y = Tensor(np.array([1, 1, 1]).astype(np.uint8))
|
||||
>>> output = rightshift(input_x, input_y)
|
||||
>>> print(output)
|
||||
[0 1 1]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""Initialize RightShift."""
|
||||
self.init_prim_io_names(inputs=['input_x', 'input_y'], outputs=['output'])
|
||||
|
||||
|
||||
class Tril(Primitive):
|
||||
"""
|
||||
Returns the lower triangular part of the matrix (2-D tensor) or batch of matrices input,
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
# Copyright 2021-2022 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -34,6 +34,7 @@ from mindspore.ops.operations import nn_ops as nps
|
|||
from mindspore.ops.operations.array_ops import Tril
|
||||
from mindspore.ops.operations.random_ops import NonDeterministicInts
|
||||
from mindspore.nn.layer import normalization
|
||||
from mindspore.ops.operations.array_ops import RightShift
|
||||
from mindspore._c_expression import security
|
||||
from tests.security_utils import security_off_wrap
|
||||
from ..ut_filter import non_graph_engine
|
||||
|
@ -2550,6 +2551,11 @@ test_case_array_ops = [
|
|||
'desc_const': [(64,)],
|
||||
'desc_inputs': [[64, 1]],
|
||||
'desc_bprop': [[64]]}),
|
||||
('RightShift', {
|
||||
'block': RightShift(),
|
||||
'desc_inputs': [Tensor(np.array([1, 2, 3]), mstype.int32),
|
||||
Tensor(np.array([5, 2, 3]), mstype.int32)],
|
||||
'skip': ['backward']}),
|
||||
('Cast', {
|
||||
'block': P.Cast(),
|
||||
'desc_const': [mstype.int32],
|
||||
|
|
Loading…
Reference in New Issue