forked from mindspore-Ecosystem/mindspore
adding Mnist python ut coverage
This commit is contained in:
parent
863f4e4fbe
commit
ab37e87d7a
|
@ -87,6 +87,13 @@ def test_cifar10_basic():
|
|||
"""
|
||||
logger.info("Test Cifar10Dataset Op")
|
||||
|
||||
# case 0: test loading the whole dataset
|
||||
data0 = ds.Cifar10Dataset(DATA_DIR_10)
|
||||
num_iter0 = 0
|
||||
for _ in data0.create_dict_iterator():
|
||||
num_iter0 += 1
|
||||
assert num_iter0 == 10000
|
||||
|
||||
# case 1: test num_samples
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR_10, num_samples=100)
|
||||
num_iter1 = 0
|
||||
|
|
|
@ -0,0 +1,238 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Test Mnist dataset operators
|
||||
"""
|
||||
import os
|
||||
import pytest
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import mindspore.dataset as ds
|
||||
from mindspore import log as logger
|
||||
|
||||
DATA_DIR = "../data/dataset/testMnistData"
|
||||
|
||||
|
||||
def load_mnist(path):
|
||||
"""
|
||||
load Mnist data
|
||||
"""
|
||||
labels_path = os.path.join(path, 't10k-labels-idx1-ubyte')
|
||||
images_path = os.path.join(path, 't10k-images-idx3-ubyte')
|
||||
with open(labels_path, 'rb') as lbpath:
|
||||
lbpath.read(8)
|
||||
labels = np.fromfile(lbpath, dtype=np.uint8)
|
||||
with open(images_path, 'rb') as imgpath:
|
||||
imgpath.read(16)
|
||||
images = np.fromfile(imgpath, dtype=np.uint8)
|
||||
images = images.reshape(-1, 28, 28, 1)
|
||||
images[images > 0] = 255 # Perform binarization to maintain consistency with our API
|
||||
return images, labels
|
||||
|
||||
|
||||
def visualize_dataset(images, labels):
|
||||
"""
|
||||
Helper function to visualize the dataset samples
|
||||
"""
|
||||
num_samples = len(images)
|
||||
for i in range(num_samples):
|
||||
plt.subplot(1, num_samples, i + 1)
|
||||
plt.imshow(images[i].squeeze(), cmap=plt.cm.gray)
|
||||
plt.title(labels[i])
|
||||
plt.show()
|
||||
|
||||
|
||||
def test_mnist_content_check():
|
||||
"""
|
||||
Validate MnistDataset image readings
|
||||
"""
|
||||
logger.info("Test MnistDataset Op with content check")
|
||||
data1 = ds.MnistDataset(DATA_DIR, num_samples=100, shuffle=False)
|
||||
images, labels = load_mnist(DATA_DIR)
|
||||
num_iter = 0
|
||||
# in this example, each dictionary has keys "image" and "label"
|
||||
image_list, label_list = [], []
|
||||
for i, data in enumerate(data1.create_dict_iterator()):
|
||||
image_list.append(data["image"])
|
||||
label_list.append("label {}".format(data["label"]))
|
||||
np.testing.assert_array_equal(data["image"], images[i])
|
||||
np.testing.assert_array_equal(data["label"], labels[i])
|
||||
num_iter += 1
|
||||
assert num_iter == 100
|
||||
|
||||
|
||||
def test_mnist_basic():
|
||||
"""
|
||||
Validate MnistDataset
|
||||
"""
|
||||
logger.info("Test MnistDataset Op")
|
||||
|
||||
# case 1: test loading whole dataset
|
||||
data1 = ds.MnistDataset(DATA_DIR)
|
||||
num_iter1 = 0
|
||||
for _ in data1.create_dict_iterator():
|
||||
num_iter1 += 1
|
||||
assert num_iter1 == 10000
|
||||
|
||||
# case 2: test num_samples
|
||||
data2 = ds.MnistDataset(DATA_DIR, num_samples=500)
|
||||
num_iter2 = 0
|
||||
for _ in data2.create_dict_iterator():
|
||||
num_iter2 += 1
|
||||
assert num_iter2 == 500
|
||||
|
||||
# case 3: test repeat
|
||||
data3 = ds.MnistDataset(DATA_DIR, num_samples=200)
|
||||
data3 = data3.repeat(5)
|
||||
num_iter3 = 0
|
||||
for _ in data3.create_dict_iterator():
|
||||
num_iter3 += 1
|
||||
assert num_iter3 == 1000
|
||||
|
||||
# case 4: test batch with drop_remainder=False
|
||||
data4 = ds.MnistDataset(DATA_DIR, num_samples=100)
|
||||
assert data4.get_dataset_size() == 100
|
||||
assert data4.get_batch_size() == 1
|
||||
data4 = data4.batch(batch_size=7) # drop_remainder is default to be False
|
||||
assert data4.get_dataset_size() == 15
|
||||
assert data4.get_batch_size() == 7
|
||||
num_iter4 = 0
|
||||
for _ in data4.create_dict_iterator():
|
||||
num_iter4 += 1
|
||||
assert num_iter4 == 15
|
||||
|
||||
# case 5: test batch with drop_remainder=True
|
||||
data5 = ds.MnistDataset(DATA_DIR, num_samples=100)
|
||||
assert data5.get_dataset_size() == 100
|
||||
assert data5.get_batch_size() == 1
|
||||
data5 = data5.batch(batch_size=7, drop_remainder=True) # the rest of incomplete batch will be dropped
|
||||
assert data5.get_dataset_size() == 14
|
||||
assert data5.get_batch_size() == 7
|
||||
num_iter5 = 0
|
||||
for _ in data5.create_dict_iterator():
|
||||
num_iter5 += 1
|
||||
assert num_iter5 == 14
|
||||
|
||||
|
||||
def test_mnist_pk_sampler():
|
||||
"""
|
||||
Test MnistDataset with PKSampler
|
||||
"""
|
||||
logger.info("Test MnistDataset Op with PKSampler")
|
||||
golden = [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4,
|
||||
5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9]
|
||||
sampler = ds.PKSampler(3)
|
||||
data = ds.MnistDataset(DATA_DIR, sampler=sampler)
|
||||
num_iter = 0
|
||||
label_list = []
|
||||
for item in data.create_dict_iterator():
|
||||
label_list.append(item["label"])
|
||||
num_iter += 1
|
||||
np.testing.assert_array_equal(golden, label_list)
|
||||
assert num_iter == 30
|
||||
|
||||
|
||||
def test_mnist_sequential_sampler():
|
||||
"""
|
||||
Test MnistDataset with SequentialSampler
|
||||
"""
|
||||
logger.info("Test MnistDataset Op with SequentialSampler")
|
||||
num_samples = 50
|
||||
sampler = ds.SequentialSampler(num_samples=num_samples)
|
||||
data1 = ds.MnistDataset(DATA_DIR, sampler=sampler)
|
||||
data2 = ds.MnistDataset(DATA_DIR, shuffle=False, num_samples=num_samples)
|
||||
label_list1, label_list2 = [], []
|
||||
num_iter = 0
|
||||
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
|
||||
label_list1.append(item1["label"])
|
||||
label_list2.append(item2["label"])
|
||||
num_iter += 1
|
||||
np.testing.assert_array_equal(label_list1, label_list2)
|
||||
assert num_iter == num_samples
|
||||
|
||||
|
||||
def test_mnist_exception():
|
||||
"""
|
||||
Test error cases for MnistDataset
|
||||
"""
|
||||
logger.info("Test error cases for MnistDataset")
|
||||
error_msg_1 = "sampler and shuffle cannot be specified at the same time"
|
||||
with pytest.raises(RuntimeError, match=error_msg_1):
|
||||
ds.MnistDataset(DATA_DIR, shuffle=False, sampler=ds.PKSampler(3))
|
||||
|
||||
error_msg_2 = "sampler and sharding cannot be specified at the same time"
|
||||
with pytest.raises(RuntimeError, match=error_msg_2):
|
||||
ds.MnistDataset(DATA_DIR, sampler=ds.PKSampler(3), num_shards=2, shard_id=0)
|
||||
|
||||
error_msg_3 = "num_shards is specified and currently requires shard_id as well"
|
||||
with pytest.raises(RuntimeError, match=error_msg_3):
|
||||
ds.MnistDataset(DATA_DIR, num_shards=10)
|
||||
|
||||
error_msg_4 = "shard_id is specified but num_shards is not"
|
||||
with pytest.raises(RuntimeError, match=error_msg_4):
|
||||
ds.MnistDataset(DATA_DIR, shard_id=0)
|
||||
|
||||
error_msg_5 = "Input shard_id is not within the required interval"
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.MnistDataset(DATA_DIR, num_shards=5, shard_id=-1)
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.MnistDataset(DATA_DIR, num_shards=5, shard_id=5)
|
||||
with pytest.raises(ValueError, match=error_msg_5):
|
||||
ds.MnistDataset(DATA_DIR, num_shards=2, shard_id=5)
|
||||
|
||||
error_msg_6 = "num_parallel_workers exceeds"
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.MnistDataset(DATA_DIR, shuffle=False, num_parallel_workers=0)
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.MnistDataset(DATA_DIR, shuffle=False, num_parallel_workers=65)
|
||||
with pytest.raises(ValueError, match=error_msg_6):
|
||||
ds.MnistDataset(DATA_DIR, shuffle=False, num_parallel_workers=-2)
|
||||
|
||||
error_msg_7 = "Argument shard_id"
|
||||
with pytest.raises(TypeError, match=error_msg_7):
|
||||
ds.MnistDataset(DATA_DIR, num_shards=2, shard_id="0")
|
||||
|
||||
|
||||
def test_mnist_visualize(plot=False):
|
||||
"""
|
||||
Visualize MnistDataset results
|
||||
"""
|
||||
logger.info("Test MnistDataset visualization")
|
||||
|
||||
data1 = ds.MnistDataset(DATA_DIR, num_samples=10, shuffle=False)
|
||||
num_iter = 0
|
||||
image_list, label_list = [], []
|
||||
for item in data1.create_dict_iterator():
|
||||
image = item["image"]
|
||||
label = item["label"]
|
||||
image_list.append(image)
|
||||
label_list.append("label {}".format(label))
|
||||
assert isinstance(image, np.ndarray)
|
||||
assert image.shape == (28, 28, 1)
|
||||
assert image.dtype == np.uint8
|
||||
assert label.dtype == np.uint32
|
||||
num_iter += 1
|
||||
assert num_iter == 10
|
||||
if plot:
|
||||
visualize_dataset(image_list, label_list)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_mnist_content_check()
|
||||
test_mnist_basic()
|
||||
test_mnist_pk_sampler()
|
||||
test_mnist_sequential_sampler()
|
||||
test_mnist_exception()
|
||||
test_mnist_visualize(plot=True)
|
|
@ -200,7 +200,7 @@ def test_cifar10_shardings(print_res=False):
|
|||
logger.info("labels of dataset: {}".format(res))
|
||||
return res
|
||||
|
||||
# 60000 rows in total. CIFAR reads everything in memory which would make each test case very slow
|
||||
# 10000 rows in total. CIFAR reads everything in memory which would make each test case very slow
|
||||
# therefore, only 2 test cases for now.
|
||||
assert sharding_config(10000, 9999, 7, False, 1) == [9]
|
||||
assert sharding_config(10000, 0, 4, False, 3) == [0, 0, 0]
|
||||
|
|
Loading…
Reference in New Issue