forked from mindspore-Ecosystem/mindspore
Add image.CentralCrop
This commit is contained in:
parent
924d4d1668
commit
aa73abc2f7
|
@ -23,7 +23,7 @@ from mindspore._checkparam import Validator as validator
|
|||
from mindspore._checkparam import Rel
|
||||
from ..cell import Cell
|
||||
|
||||
__all__ = ['ImageGradients', 'SSIM', 'PSNR']
|
||||
__all__ = ['ImageGradients', 'SSIM', 'PSNR', 'CentralCrop']
|
||||
|
||||
class ImageGradients(Cell):
|
||||
r"""
|
||||
|
@ -259,3 +259,71 @@ class PSNR(Cell):
|
|||
psnr = 10 * P.Log()(F.square(max_val) / mse) / F.scalar_log(10.0)
|
||||
|
||||
return psnr
|
||||
|
||||
|
||||
@constexpr
|
||||
def _check_input_3d_or_4d(input_shape, param_name, func_name):
|
||||
"""check input 3d or 4d"""
|
||||
if len(input_shape) != 3 and len(input_shape) != 4:
|
||||
raise ValueError(f"{func_name} {param_name} should be 3d or 4d, but got shape {input_shape}")
|
||||
return True
|
||||
|
||||
@constexpr
|
||||
def _get_bbox(rank, shape, central_fraction):
|
||||
"""get bbox start and size for slice"""
|
||||
if rank == 3:
|
||||
c, h, w = shape
|
||||
else:
|
||||
n, c, h, w = shape
|
||||
|
||||
bbox_h_start = int((float(h) - float(h) * central_fraction) / 2)
|
||||
bbox_w_start = int((float(w) - float(w) * central_fraction) / 2)
|
||||
bbox_h_size = h - bbox_h_start * 2
|
||||
bbox_w_size = w - bbox_w_start * 2
|
||||
|
||||
if rank == 3:
|
||||
bbox_begin = (0, bbox_h_start, bbox_w_start)
|
||||
bbox_size = (c, bbox_h_size, bbox_w_size)
|
||||
else:
|
||||
bbox_begin = (0, 0, bbox_h_start, bbox_w_start)
|
||||
bbox_size = (n, c, bbox_h_size, bbox_w_size)
|
||||
|
||||
return bbox_begin, bbox_size
|
||||
|
||||
class CentralCrop(Cell):
|
||||
"""
|
||||
Crop the centeral region of the images with the central_fraction.
|
||||
|
||||
Args:
|
||||
central_fraction (float): Fraction of size to crop. It must be float and in range (0.0, 1.0].
|
||||
|
||||
Inputs:
|
||||
- **image** (Tensor) - A 3-D tensor of shape [C, H, W], or a 4-D tensor of shape [N, C, H, W].
|
||||
|
||||
Outputs:
|
||||
Tensor, 3-D or 4-D float tensor, according to the input.
|
||||
|
||||
Examples:
|
||||
>>> net = nn.CentralCrop(central_fraction=0.5)
|
||||
>>> image = Tensor(np.random.random((4, 3, 4, 4)), mindspore.float32)
|
||||
>>> output = net(image)
|
||||
"""
|
||||
|
||||
def __init__(self, central_fraction):
|
||||
super(CentralCrop, self).__init__()
|
||||
validator.check_value_type("central_fraction", central_fraction, [float], self.cls_name)
|
||||
self.central_fraction = validator.check_number_range('central_fraction', central_fraction,
|
||||
0.0, 1.0, Rel.INC_RIGHT, self.cls_name)
|
||||
self.slice = P.Slice()
|
||||
|
||||
def construct(self, image):
|
||||
image_shape = F.shape(image)
|
||||
rank = len(image_shape)
|
||||
_check_input_3d_or_4d(image_shape, "image", self.cls_name)
|
||||
if self.central_fraction == 1.0:
|
||||
return image
|
||||
|
||||
bbox_begin, bbox_size = _get_bbox(rank, image_shape, self.central_fraction)
|
||||
image = self.slice(image, bbox_begin, bbox_size)
|
||||
|
||||
return image
|
||||
|
|
|
@ -0,0 +1,74 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
test CentralCrop
|
||||
"""
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common.api import _executor
|
||||
|
||||
|
||||
class CentralCropNet(nn.Cell):
|
||||
def __init__(self, central_fraction):
|
||||
super(CentralCropNet, self).__init__()
|
||||
self.net = nn.CentralCrop(central_fraction)
|
||||
|
||||
def construct(self, image):
|
||||
return self.net(image)
|
||||
|
||||
|
||||
def test_compile_3d_central_crop():
|
||||
central_fraction = 0.2
|
||||
net = CentralCropNet(central_fraction)
|
||||
image = Tensor(np.random.random((3, 16, 16)), mstype.float32)
|
||||
_executor.compile(net, image)
|
||||
|
||||
|
||||
def test_compile_4d_central_crop():
|
||||
central_fraction = 0.5
|
||||
net = CentralCropNet(central_fraction)
|
||||
image = Tensor(np.random.random((8, 3, 16, 16)), mstype.float32)
|
||||
_executor.compile(net, image)
|
||||
|
||||
|
||||
def test_central_fraction_bool():
|
||||
central_fraction = True
|
||||
with pytest.raises(TypeError):
|
||||
_ = CentralCropNet(central_fraction)
|
||||
|
||||
|
||||
def test_central_crop_central_fraction_negative():
|
||||
central_fraction = -1.0
|
||||
with pytest.raises(ValueError):
|
||||
_ = CentralCropNet(central_fraction)
|
||||
|
||||
|
||||
def test_central_fraction_zero():
|
||||
central_fraction = 0.0
|
||||
with pytest.raises(ValueError):
|
||||
_ = CentralCropNet(central_fraction)
|
||||
|
||||
|
||||
def test_central_crop_invalid_5d_input():
|
||||
invalid_shape = (8, 3, 16, 16, 1)
|
||||
invalid_image = Tensor(np.random.random(invalid_shape))
|
||||
|
||||
net = CentralCropNet(central_fraction=0.5)
|
||||
with pytest.raises(ValueError):
|
||||
_executor.compile(net, invalid_image)
|
Loading…
Reference in New Issue