forked from mindspore-Ecosystem/mindspore
!12281 fix exec order bug about monad and add test_case in ci
From: @zengzitao Reviewed-by: Signed-off-by:
This commit is contained in:
commit
aa71118a99
|
@ -88,11 +88,14 @@ std::map<size_t, AnfNodePtr> FindAssignAndOutputVal(const CNodePtr &fg_cnode) {
|
|||
return output_replace_map;
|
||||
}
|
||||
|
||||
bool HasPathToParamUser(const AnfNodePtr &gk_node, const AnfNodePtr ¶m_user) {
|
||||
bool HasPathToParamUser(const AnfNodePtr &gk_node, const AnfNodePtr ¶m_user, const AnfNodePtr &getitem) {
|
||||
auto mng = AnfAlgo::GetCNodeFuncGraphPtr(gk_node)->manager();
|
||||
MS_EXCEPTION_IF_NULL(mng);
|
||||
bool result = false;
|
||||
auto IncludeUser = [&result, &gk_node](const AnfNodePtr &node) {
|
||||
auto IncludeUser = [&result, &gk_node, &getitem](const AnfNodePtr &node) {
|
||||
if (node == getitem) {
|
||||
return EXCLUDE;
|
||||
}
|
||||
if (node == gk_node) {
|
||||
result = true;
|
||||
return EXCLUDE;
|
||||
|
@ -103,23 +106,23 @@ bool HasPathToParamUser(const AnfNodePtr &gk_node, const AnfNodePtr ¶m_user)
|
|||
return result;
|
||||
}
|
||||
|
||||
void KeepExecOrder(const FuncGraphPtr &func_graph, const AnfNodePtr &gk_node, const AnfNodePtr &par_user_node,
|
||||
void KeepExecOrder(const FuncGraphPtr &func_graph, const AnfNodePtr &getitem, const AnfNodePtr &assign_to_node,
|
||||
const FuncGraphManagerPtr &mng) {
|
||||
// Insert update_state_node, need mount a monad node.
|
||||
auto u = NewValueNode(kUMonad);
|
||||
u->set_abstract(kUMonad->ToAbstract());
|
||||
AnfNodePtrList update_state_inputs = {NewValueNode(prim::kPrimUpdateState), u, gk_node};
|
||||
AnfNodePtrList update_state_inputs = {NewValueNode(prim::kPrimUpdateState), u, getitem};
|
||||
auto update_state_node = func_graph->NewCNode(update_state_inputs);
|
||||
update_state_node->set_abstract(gk_node->abstract());
|
||||
update_state_node->set_abstract(getitem->abstract());
|
||||
func_graph->AddNode(update_state_node);
|
||||
|
||||
// Insert load_node
|
||||
AnfNodePtrList load_inputs = {NewValueNode(prim::kPrimLoad), par_user_node, update_state_node};
|
||||
AnfNodePtrList load_inputs = {NewValueNode(prim::kPrimLoad), assign_to_node, update_state_node};
|
||||
auto load_node = func_graph->NewCNode(load_inputs);
|
||||
load_node->set_abstract(par_user_node->abstract());
|
||||
load_node->set_abstract(assign_to_node->abstract());
|
||||
func_graph->AddNode(load_node);
|
||||
|
||||
mng->Replace(gk_node, par_user_node);
|
||||
mng->Replace(getitem, load_node);
|
||||
}
|
||||
|
||||
int64_t GetitemIndex(const AnfNodePtr &getitem) {
|
||||
|
@ -136,17 +139,18 @@ void UpdateUsersOfGraphKernel(const FuncGraphPtr &func_graph, const AnfNodePtr &
|
|||
auto getitem = getitem_iter.first;
|
||||
if (GetitemIndex(getitem) != removed_index) continue;
|
||||
auto getitem_users = mng->node_users()[getitem]; // get a copy of getitem's users before replacing
|
||||
mng->Replace(getitem, assign_to);
|
||||
|
||||
for (const auto &getitem_user_iter : getitem_users) {
|
||||
auto getitem_user = getitem_user_iter.first;
|
||||
// 1. A previous pass `DependFormater` has ensured that all data users are directly link to its
|
||||
// input, without Depend node.
|
||||
// 2. If the `cnode` has another path to the getitem_user, it's unnecessary to add a ControlDepend.
|
||||
if (!AnfAlgo::IsRealKernel(getitem_user) || HasPathToParamUser(cnode, getitem_user)) {
|
||||
// 2. If the `cnode` has another path to the getitem_user, it's unnecessary to add update_state and load node to
|
||||
// keep exec_order.
|
||||
if (!AnfAlgo::IsRealKernel(getitem_user) || HasPathToParamUser(cnode, getitem_user, getitem)) {
|
||||
mng->Replace(getitem, assign_to);
|
||||
continue;
|
||||
}
|
||||
KeepExecOrder(func_graph, cnode, getitem_user, mng);
|
||||
KeepExecOrder(func_graph, getitem, assign_to, mng);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -0,0 +1,102 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
import mindspore.ops.operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
||||
|
||||
class TestOptAssignNet_1(Cell):
|
||||
def __init__(self):
|
||||
super(TestOptAssignNet_1, self).__init__()
|
||||
self.add = P.Add()
|
||||
self.reduce_max = P.ReduceMax()
|
||||
self.param = Parameter(
|
||||
Tensor(np.zeros([2, 2, 2]).astype(np.float32)), name='param')
|
||||
|
||||
def construct(self, x, y):
|
||||
add_res = self.add(x, y)
|
||||
F.depend(add_res, F.assign(self.param, add_res))
|
||||
|
||||
return self.reduce_max(add_res)
|
||||
|
||||
|
||||
class TestOptAssignNet_2(Cell):
|
||||
def __init__(self):
|
||||
super(TestOptAssignNet_2, self).__init__()
|
||||
self.add = P.Add()
|
||||
self.param = Parameter(
|
||||
Tensor(np.zeros([2, 2, 2]).astype(np.float32)), name='param')
|
||||
|
||||
def construct(self, x, y):
|
||||
add_res = self.add(x, y)
|
||||
F.depend(add_res, F.assign(self.param, add_res))
|
||||
|
||||
return add_res
|
||||
|
||||
|
||||
def test_opt_assign_output_1():
|
||||
np.random.seed(0)
|
||||
input_x = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32)
|
||||
input_y = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
enable_graph_kernel=True, device_target="GPU")
|
||||
net = TestOptAssignNet_1()
|
||||
result_open_gk = net(Tensor(input_x), Tensor(input_y))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
enable_graph_kernel=False, device_target="GPU")
|
||||
net_beta = TestOptAssignNet_1()
|
||||
result_close_gk = net_beta(Tensor(input_x), Tensor(input_y))
|
||||
res = np.allclose(result_open_gk.asnumpy(), result_close_gk.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
||||
assert res
|
||||
|
||||
|
||||
def test_opt_assign_output_2():
|
||||
np.random.seed(0)
|
||||
input_x = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32)
|
||||
input_y = np.random.normal(0, 1, [2, 2, 2]).astype(np.float32)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
enable_graph_kernel=True, device_target="GPU")
|
||||
net = TestOptAssignNet_2()
|
||||
result_open_gk = net(Tensor(input_x), Tensor(input_y))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
enable_graph_kernel=False, device_target="GPU")
|
||||
net_beta = TestOptAssignNet_2()
|
||||
result_close_gk = net_beta(Tensor(input_x), Tensor(input_y))
|
||||
res = np.allclose(result_open_gk.asnumpy(), result_close_gk.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
||||
assert res
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_opt_assign_gpu_1():
|
||||
test_opt_assign_output_1()
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_opt_assign_gpu_2():
|
||||
test_opt_assign_output_2()
|
Loading…
Reference in New Issue