forked from mindspore-Ecosystem/mindspore
optim pylint
This commit is contained in:
parent
135cfc6adf
commit
a9972a7def
|
@ -13,7 +13,6 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import pytest
|
||||
|
||||
|
||||
def test_expand_loss():
|
||||
|
|
|
@ -13,7 +13,6 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import os
|
||||
import pytest
|
||||
|
||||
|
||||
def test_expand_loss():
|
||||
|
|
|
@ -14,7 +14,6 @@
|
|||
# ============================================================================
|
||||
"""train_multinpu."""
|
||||
|
||||
|
||||
import os
|
||||
import sys
|
||||
import numpy as np
|
||||
|
@ -35,7 +34,6 @@ context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirr
|
|||
init()
|
||||
|
||||
|
||||
|
||||
def get_WideDeep_net(config):
|
||||
WideDeep_net = WideDeepModel(config)
|
||||
loss_net = NetWithLossClass(WideDeep_net, config)
|
||||
|
@ -48,6 +46,7 @@ class ModelBuilder():
|
|||
"""
|
||||
ModelBuilder
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
|
@ -101,14 +100,13 @@ def test_train_eval():
|
|||
print("=====" * 5 + "model.eval() initialized: {}".format(out))
|
||||
model.train(epochs, ds_train,
|
||||
callbacks=[TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback, ckpoint_cb])
|
||||
expect_out0 = [0.792634,0.799862,0.803324]
|
||||
expect_out6 = [0.796580,0.803908,0.807262]
|
||||
expect_out0 = [0.792634, 0.799862, 0.803324]
|
||||
expect_out6 = [0.796580, 0.803908, 0.807262]
|
||||
if get_rank() == 0:
|
||||
assert np.allclose(eval_callback.eval_values, expect_out0)
|
||||
if get_rank() == 6:
|
||||
assert np.allclose(eval_callback.eval_values, expect_out6)
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_train_eval()
|
||||
|
|
|
@ -16,8 +16,10 @@
|
|||
"""train bert network without lossscale"""
|
||||
|
||||
import os
|
||||
import pytest
|
||||
|
||||
import numpy as np
|
||||
from src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell
|
||||
from src.bert_model import BertConfig
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine.datasets as de
|
||||
|
@ -25,14 +27,11 @@ import mindspore.dataset.transforms.c_transforms as C
|
|||
from mindspore import context
|
||||
from mindspore import log as logger
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.nn import learning_rate_schedule as lr_schedules
|
||||
from mindspore.nn.optim import Lamb
|
||||
from mindspore.train.callback import Callback
|
||||
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.nn import learning_rate_schedule as lr_schedules
|
||||
from src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell
|
||||
from src.bert_model import BertConfig
|
||||
|
||||
|
||||
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
|
||||
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
|
||||
|
|
|
@ -23,10 +23,8 @@ import pytest
|
|||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
|
|
|
@ -21,7 +21,6 @@ import mindspore.nn as nn
|
|||
from mindspore import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.nn import Dense
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.ops import operations as P
|
||||
|
|
|
@ -18,7 +18,6 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
|
|
@ -54,6 +54,7 @@ def test_slice_grad():
|
|||
print("output:\n", output)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
class SliceGrad2(nn.Cell):
|
||||
def __init__(self):
|
||||
super(SliceGrad2, self).__init__()
|
||||
|
@ -62,6 +63,7 @@ class SliceGrad2(nn.Cell):
|
|||
def construct(self, dy, x):
|
||||
return self.slicegrad(dy, x, (0, 1, 0), (2, 2, 2))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -71,10 +73,11 @@ def test_slice_grad2():
|
|||
grad = SliceGrad2()
|
||||
output = grad(dy, x)
|
||||
print("output:\n", output)
|
||||
expect = [[[0., 0.], [2., 3.], [4., 5.]],
|
||||
expect = [[[0., 0.], [2., 3.], [4., 5.]],
|
||||
[[0., 0.], [8., 9.], [10., 11.]]]
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_slice_grad()
|
||||
test_slice_grad2()
|
||||
|
|
|
@ -21,10 +21,10 @@ import mindspore.nn as nn
|
|||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
|
||||
class Slice(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Slice, self).__init__()
|
||||
|
@ -33,6 +33,7 @@ class Slice(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.slice(x, (0, 1, 0), (2, 1, 3))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
|
@ -47,6 +48,7 @@ def test_slice():
|
|||
print("output:\n", output)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
class Slice2(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Slice2, self).__init__()
|
||||
|
@ -55,12 +57,13 @@ class Slice2(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.slice(x, (1, 0, 0), (1, 2, 3))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_slice2():
|
||||
x = Tensor(np.arange(3 * 2 * 3).reshape(3, 2, 3), mstype.float32)
|
||||
expect = [[[6., 7., 8.],
|
||||
expect = [[[6., 7., 8.],
|
||||
[9., 10., 11.]]]
|
||||
|
||||
slice_op = Slice2()
|
||||
|
@ -68,6 +71,7 @@ def test_slice2():
|
|||
print("output:\n", output)
|
||||
assert (output.asnumpy() == expect).all()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_slice()
|
||||
test_slice2()
|
||||
|
|
|
@ -14,9 +14,11 @@
|
|||
# ============================================================================
|
||||
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||
|
||||
|
||||
# sum = input1 + input2 + const_bias
|
||||
class CusAdd3(PrimitiveWithInfer):
|
||||
"""Custom add3 definition"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, const_bias=0.0):
|
||||
self.init_prim_io_names(inputs=['input1', 'input2'], outputs=['sum3'])
|
||||
|
|
|
@ -24,8 +24,8 @@ import mindspore.context as context
|
|||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from tests.summary_utils import SummaryReader
|
||||
from mindspore.train.summary.summary_record import SummaryRecord
|
||||
from tests.summary_utils import SummaryReader
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
|
|
|
@ -16,17 +16,15 @@
|
|||
This is the test module for mindrecord
|
||||
"""
|
||||
import collections
|
||||
import json
|
||||
import numpy as np
|
||||
import os
|
||||
import pytest
|
||||
import re
|
||||
import string
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
from mindspore import log as logger
|
||||
from mindspore.dataset.transforms.vision import Inter
|
||||
from mindspore.mindrecord import FileWriter
|
||||
|
||||
FILES_NUM = 4
|
||||
|
@ -52,9 +50,9 @@ def add_and_remove_cv_file():
|
|||
writer = FileWriter(CV_FILE_NAME, FILES_NUM)
|
||||
data = get_data(CV_DIR_NAME)
|
||||
cv_schema_json = {"id": {"type": "int32"},
|
||||
"file_name": {"type": "string"},
|
||||
"label": {"type": "int32"},
|
||||
"data": {"type": "bytes"}}
|
||||
"file_name": {"type": "string"},
|
||||
"label": {"type": "int32"},
|
||||
"data": {"type": "bytes"}}
|
||||
writer.add_schema(cv_schema_json, "img_schema")
|
||||
writer.add_index(["file_name", "label"])
|
||||
writer.write_raw_data(data)
|
||||
|
@ -85,14 +83,14 @@ def add_and_remove_nlp_file():
|
|||
writer = FileWriter(NLP_FILE_NAME, FILES_NUM)
|
||||
data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
|
||||
nlp_schema_json = {"id": {"type": "string"}, "label": {"type": "int32"},
|
||||
"rating": {"type": "float32"},
|
||||
"input_ids": {"type": "int64",
|
||||
"shape": [-1]},
|
||||
"input_mask": {"type": "int64",
|
||||
"shape": [1, -1]},
|
||||
"segment_ids": {"type": "int64",
|
||||
"shape": [2, -1]}
|
||||
}
|
||||
"rating": {"type": "float32"},
|
||||
"input_ids": {"type": "int64",
|
||||
"shape": [-1]},
|
||||
"input_mask": {"type": "int64",
|
||||
"shape": [1, -1]},
|
||||
"segment_ids": {"type": "int64",
|
||||
"shape": [2, -1]}
|
||||
}
|
||||
writer.set_header_size(1 << 14)
|
||||
writer.set_page_size(1 << 15)
|
||||
writer.add_schema(nlp_schema_json, "nlp_schema")
|
||||
|
@ -110,6 +108,7 @@ def add_and_remove_nlp_file():
|
|||
os.remove("{}".format(x))
|
||||
os.remove("{}.db".format(x))
|
||||
|
||||
|
||||
def test_cv_minddataset_reader_basic_padded_samples(add_and_remove_cv_file):
|
||||
"""tutorial for cv minderdataset."""
|
||||
columns_list = ["label", "file_name", "data"]
|
||||
|
@ -130,7 +129,7 @@ def test_cv_minddataset_reader_basic_padded_samples(add_and_remove_cv_file):
|
|||
if item['label'] == -1:
|
||||
num_padded_iter += 1
|
||||
assert item['file_name'] == bytes(padded_sample['file_name'],
|
||||
encoding='utf8')
|
||||
encoding='utf8')
|
||||
assert item['label'] == padded_sample['label']
|
||||
assert (item['data'] == np.array(list(padded_sample['data']))).all()
|
||||
num_iter += 1
|
||||
|
@ -177,6 +176,7 @@ def test_cv_minddataset_partition_padded_samples(add_and_remove_cv_file):
|
|||
partitions(5, 5, 3)
|
||||
partitions(9, 8, 2)
|
||||
|
||||
|
||||
def test_cv_minddataset_partition_padded_samples_multi_epoch(add_and_remove_cv_file):
|
||||
"""tutorial for cv minddataset."""
|
||||
columns_list = ["data", "file_name", "label"]
|
||||
|
@ -248,6 +248,7 @@ def test_cv_minddataset_partition_padded_samples_multi_epoch(add_and_remove_cv_f
|
|||
partitions(5, 5, 3)
|
||||
partitions(9, 8, 2)
|
||||
|
||||
|
||||
def test_cv_minddataset_partition_padded_samples_no_dividsible(add_and_remove_cv_file):
|
||||
"""tutorial for cv minddataset."""
|
||||
columns_list = ["data", "file_name", "label"]
|
||||
|
@ -273,6 +274,7 @@ def test_cv_minddataset_partition_padded_samples_no_dividsible(add_and_remove_cv
|
|||
with pytest.raises(RuntimeError):
|
||||
partitions(4, 1)
|
||||
|
||||
|
||||
def test_cv_minddataset_partition_padded_samples_dataset_size_no_divisible(add_and_remove_cv_file):
|
||||
columns_list = ["data", "file_name", "label"]
|
||||
|
||||
|
@ -291,8 +293,10 @@ def test_cv_minddataset_partition_padded_samples_dataset_size_no_divisible(add_a
|
|||
num_padded=num_padded)
|
||||
with pytest.raises(RuntimeError):
|
||||
data_set.get_dataset_size() == 3
|
||||
|
||||
partitions(4, 1)
|
||||
|
||||
|
||||
def test_cv_minddataset_partition_padded_samples_no_equal_column_list(add_and_remove_cv_file):
|
||||
columns_list = ["data", "file_name", "label"]
|
||||
|
||||
|
@ -314,9 +318,11 @@ def test_cv_minddataset_partition_padded_samples_no_equal_column_list(add_and_re
|
|||
logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
|
||||
logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
|
||||
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
||||
|
||||
with pytest.raises(Exception, match="padded_sample cannot match columns_list."):
|
||||
partitions(4, 2)
|
||||
|
||||
|
||||
def test_cv_minddataset_partition_padded_samples_no_column_list(add_and_remove_cv_file):
|
||||
data = get_data(CV_DIR_NAME)
|
||||
padded_sample = data[0]
|
||||
|
@ -336,9 +342,11 @@ def test_cv_minddataset_partition_padded_samples_no_column_list(add_and_remove_c
|
|||
logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
|
||||
logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
|
||||
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
||||
|
||||
with pytest.raises(Exception, match="padded_sample is specified and requires columns_list as well."):
|
||||
partitions(4, 2)
|
||||
|
||||
|
||||
def test_cv_minddataset_partition_padded_samples_no_num_padded(add_and_remove_cv_file):
|
||||
columns_list = ["data", "file_name", "label"]
|
||||
data = get_data(CV_DIR_NAME)
|
||||
|
@ -357,9 +365,11 @@ def test_cv_minddataset_partition_padded_samples_no_num_padded(add_and_remove_cv
|
|||
logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
|
||||
logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
|
||||
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
||||
|
||||
with pytest.raises(Exception, match="padded_sample is specified and requires num_padded as well."):
|
||||
partitions(4, 2)
|
||||
|
||||
|
||||
def test_cv_minddataset_partition_padded_samples_no_padded_samples(add_and_remove_cv_file):
|
||||
columns_list = ["data", "file_name", "label"]
|
||||
data = get_data(CV_DIR_NAME)
|
||||
|
@ -378,18 +388,18 @@ def test_cv_minddataset_partition_padded_samples_no_padded_samples(add_and_remov
|
|||
logger.info("-------------- len(item[data]): {} ------------------------".format(len(item["data"])))
|
||||
logger.info("-------------- item[data]: {} -----------------------------".format(item["data"]))
|
||||
logger.info("-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
||||
|
||||
with pytest.raises(Exception, match="num_padded is specified but padded_sample is not."):
|
||||
partitions(4, 2)
|
||||
|
||||
|
||||
|
||||
def test_nlp_minddataset_reader_basic_padded_samples(add_and_remove_nlp_file):
|
||||
columns_list = ["input_ids", "id", "rating"]
|
||||
|
||||
data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
|
||||
padded_sample = data[0]
|
||||
padded_sample['id'] = "-1"
|
||||
padded_sample['input_ids'] = np.array([-1,-1,-1,-1], dtype=np.int64)
|
||||
padded_sample['input_ids'] = np.array([-1, -1, -1, -1], dtype=np.int64)
|
||||
padded_sample['rating'] = 1.0
|
||||
num_readers = 4
|
||||
|
||||
|
@ -406,7 +416,9 @@ def test_nlp_minddataset_reader_basic_padded_samples(add_and_remove_nlp_file):
|
|||
for item in data_set.create_dict_iterator():
|
||||
logger.info("-------------- item[id]: {} ------------------------".format(item["id"]))
|
||||
logger.info("-------------- item[rating]: {} --------------------".format(item["rating"]))
|
||||
logger.info("-------------- item[input_ids]: {}, shape: {} -----------------".format(item["input_ids"], item["input_ids"].shape))
|
||||
logger.info("-------------- item[input_ids]: {}, shape: {} -----------------".format(
|
||||
item["input_ids"],
|
||||
item["input_ids"].shape))
|
||||
if item['id'] == bytes('-1', encoding='utf-8'):
|
||||
num_padded_iter += 1
|
||||
assert item['id'] == bytes(padded_sample['id'], encoding='utf-8')
|
||||
|
@ -420,13 +432,14 @@ def test_nlp_minddataset_reader_basic_padded_samples(add_and_remove_nlp_file):
|
|||
partitions(5, 5, 3)
|
||||
partitions(9, 8, 2)
|
||||
|
||||
|
||||
def test_nlp_minddataset_reader_basic_padded_samples_multi_epoch(add_and_remove_nlp_file):
|
||||
columns_list = ["input_ids", "id", "rating"]
|
||||
|
||||
data = [x for x in get_nlp_data(NLP_FILE_POS, NLP_FILE_VOCAB, 10)]
|
||||
padded_sample = data[0]
|
||||
padded_sample['id'] = "-1"
|
||||
padded_sample['input_ids'] = np.array([-1,-1,-1,-1], dtype=np.int64)
|
||||
padded_sample['input_ids'] = np.array([-1, -1, -1, -1], dtype=np.int64)
|
||||
padded_sample['rating'] = 1.0
|
||||
num_readers = 4
|
||||
repeat_size = 3
|
||||
|
@ -451,7 +464,9 @@ def test_nlp_minddataset_reader_basic_padded_samples_multi_epoch(add_and_remove_
|
|||
for item in data_set.create_dict_iterator():
|
||||
logger.info("-------------- item[id]: {} ------------------------".format(item["id"]))
|
||||
logger.info("-------------- item[rating]: {} --------------------".format(item["rating"]))
|
||||
logger.info("-------------- item[input_ids]: {}, shape: {} -----------------".format(item["input_ids"], item["input_ids"].shape))
|
||||
logger.info("-------------- item[input_ids]: {}, shape: {} -----------------".format(
|
||||
item["input_ids"],
|
||||
item["input_ids"].shape))
|
||||
if item['id'] == bytes('-1', encoding='utf-8'):
|
||||
num_padded_iter += 1
|
||||
assert item['id'] == bytes(padded_sample['id'], encoding='utf-8')
|
||||
|
@ -488,7 +503,7 @@ def test_nlp_minddataset_reader_basic_padded_samples_check_whole_reshuffle_resul
|
|||
|
||||
padded_sample = {}
|
||||
padded_sample['id'] = "-1"
|
||||
padded_sample['input_ids'] = np.array([-1,-1,-1,-1], dtype=np.int64)
|
||||
padded_sample['input_ids'] = np.array([-1, -1, -1, -1], dtype=np.int64)
|
||||
padded_sample['rating'] = 1.0
|
||||
num_readers = 4
|
||||
repeat_size = 3
|
||||
|
@ -512,14 +527,15 @@ def test_nlp_minddataset_reader_basic_padded_samples_check_whole_reshuffle_resul
|
|||
logger.info("-------------- item[id]: {} ------------------------".format(item["id"]))
|
||||
logger.info("-------------- item[rating]: {} --------------------".format(item["rating"]))
|
||||
logger.info("-------------- item[input_ids]: {}, shape: {} -----------------"
|
||||
.format(item["input_ids"], item["input_ids"].shape))
|
||||
.format(item["input_ids"], item["input_ids"].shape))
|
||||
if item['id'] == bytes('-1', encoding='utf-8'):
|
||||
num_padded_iter += 1
|
||||
assert item['id'] == bytes(padded_sample['id'], encoding='utf-8')
|
||||
assert (item['input_ids'] == padded_sample['input_ids']).all()
|
||||
assert (item['rating'] == padded_sample['rating']).all()
|
||||
# save epoch result
|
||||
epoch_result[partition_id][int(inner_num_iter / dataset_size)][inner_num_iter % dataset_size] = item["id"]
|
||||
epoch_result[partition_id][int(inner_num_iter / dataset_size)][inner_num_iter % dataset_size] = item[
|
||||
"id"]
|
||||
num_iter += 1
|
||||
inner_num_iter += 1
|
||||
assert epoch_result[partition_id][0] not in (epoch_result[partition_id][1], epoch_result[partition_id][2])
|
||||
|
@ -651,6 +667,7 @@ def inputs(vectors, maxlen=50):
|
|||
segment = [0] * maxlen
|
||||
return input_, mask, segment
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_cv_minddataset_reader_basic_padded_samples(add_and_remove_cv_file)
|
||||
test_cv_minddataset_partition_padded_samples(add_and_remove_cv_file)
|
||||
|
|
|
@ -216,6 +216,7 @@ def test_sampler_chain():
|
|||
assert test_config(5, 3) == [3]
|
||||
assert test_config(5, 4) == [4]
|
||||
|
||||
|
||||
def test_add_sampler_invalid_input():
|
||||
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
||||
_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
||||
|
@ -231,7 +232,7 @@ def test_add_sampler_invalid_input():
|
|||
|
||||
sampler = ds.SequentialSampler()
|
||||
with pytest.raises(ValueError) as info:
|
||||
data2 = ds.ManifestDataset(manifest_file, sampler=sampler, num_samples=20)
|
||||
data2 = ds.ManifestDataset(manifest_file, sampler=sampler, num_samples=20)
|
||||
assert "Conflicting arguments during sampler assignments" in str(info.value)
|
||||
|
||||
|
||||
|
|
|
@ -19,7 +19,10 @@ import filecmp
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from test_minddataset_sampler import add_and_remove_cv_file, get_data, CV_DIR_NAME, CV_FILE_NAME
|
||||
from util import config_get_set_num_parallel_workers
|
||||
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.c_transforms as c
|
||||
|
@ -27,8 +30,6 @@ import mindspore.dataset.transforms.vision.c_transforms as vision
|
|||
from mindspore import log as logger
|
||||
from mindspore.dataset.transforms.vision import Inter
|
||||
|
||||
from test_minddataset_sampler import add_and_remove_cv_file, get_data, CV_DIR_NAME, CV_FILE_NAME
|
||||
from util import config_get_set_num_parallel_workers
|
||||
|
||||
def test_imagefolder(remove_json_files=True):
|
||||
"""
|
||||
|
|
|
@ -29,7 +29,6 @@ from mindspore.common import ms_function
|
|||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
grad_by_list = C.GradOperation(get_by_list=True)
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
|
||||
|
@ -123,6 +122,7 @@ def test_if_none():
|
|||
net = Net(z)
|
||||
assert np.all(net(x, y).asnumpy() == y.asnumpy())
|
||||
|
||||
|
||||
def test_if_str_is_not_none_right():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, z: str):
|
||||
|
@ -455,8 +455,10 @@ def test_parser_switch_layer_switch_in_bprop():
|
|||
super(OneInputBprop, self).__init__()
|
||||
self.op = P.ReLU()
|
||||
self.funcs = funcs
|
||||
|
||||
def construct(self, i, x):
|
||||
return self.op(x)
|
||||
return self.op(x)
|
||||
|
||||
def bprop(self, i, x, out, dout):
|
||||
return i, self.funcs[i](x, dout)
|
||||
|
||||
|
@ -475,6 +477,7 @@ def test_parser_switch_layer_switch_in_bprop():
|
|||
|
||||
def construct(self, x, y):
|
||||
return self.op(x, y)
|
||||
|
||||
func1 = Add()
|
||||
func2 = Mul()
|
||||
funcs = (func1, func2)
|
||||
|
@ -572,6 +575,7 @@ def test_switch_layer_env_eliminate():
|
|||
weights = self.weights
|
||||
grad = self.grad_op(self.net, weights)(x, index)
|
||||
return grad
|
||||
|
||||
net = Net()
|
||||
net2 = NetGrad(net)
|
||||
x = Tensor(np.ones((3, 1, 12, 12)), ms.float32)
|
||||
|
@ -601,6 +605,7 @@ def test_switch_layer_single_layer():
|
|||
weights = self.weights
|
||||
grad = self.grad_op(self.net, weights)(x, index)
|
||||
return grad
|
||||
|
||||
net = Net()
|
||||
net2 = NetGrad(net)
|
||||
x = Tensor(np.ones((3, 1, 12, 12)), ms.float32)
|
||||
|
@ -638,6 +643,7 @@ def test_if_nested_compile():
|
|||
else:
|
||||
res = self.squre(self.value)
|
||||
return res
|
||||
|
||||
x = Tensor(1.0, dtype=ms.float32)
|
||||
y = Tensor(2.0, dtype=ms.float32)
|
||||
net = Net()
|
||||
|
@ -660,6 +666,7 @@ def test_if_inside_for():
|
|||
else:
|
||||
res = res - y
|
||||
return res
|
||||
|
||||
c1 = Tensor(1, dtype=ms.int32)
|
||||
c2 = Tensor(1, dtype=ms.int32)
|
||||
net = Net()
|
||||
|
@ -671,6 +678,7 @@ def test_while_in_while():
|
|||
c2 = Tensor(2, dtype=ms.int32)
|
||||
c3 = Tensor(3, dtype=ms.int32)
|
||||
c4 = Tensor(4, dtype=ms.int32)
|
||||
|
||||
@ms_function
|
||||
def while_in_while(x, y, z, u):
|
||||
out = c4
|
||||
|
@ -683,6 +691,7 @@ def test_while_in_while():
|
|||
|
||||
out = out + 3
|
||||
return out
|
||||
|
||||
while_in_while(c1, c2, c3, c4)
|
||||
|
||||
|
||||
|
@ -692,6 +701,7 @@ def test_tensor_cond():
|
|||
super(Net, self).__init__()
|
||||
self.t = Tensor(np.array(0, np.bool))
|
||||
self.t1 = Tensor(np.array([True], np.bool))
|
||||
|
||||
def construct(self, x, y):
|
||||
t = 0
|
||||
if self.t:
|
||||
|
@ -703,18 +713,19 @@ def test_tensor_cond():
|
|||
else:
|
||||
t = t + x * y
|
||||
return t
|
||||
|
||||
|
||||
|
||||
x = Tensor(np.ones([6, 8, 10], np.int32))
|
||||
y = Tensor(np.ones([6, 8, 10], np.int32))
|
||||
net = Net()
|
||||
out = net(x, y)
|
||||
|
||||
|
||||
def test_tensor_cond_exception():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.t = Tensor(np.array([True, False], np.bool))
|
||||
|
||||
def construct(self, x, y):
|
||||
t = 0
|
||||
if self.t:
|
||||
|
@ -722,19 +733,20 @@ def test_tensor_cond_exception():
|
|||
else:
|
||||
t = t - x / y
|
||||
return t
|
||||
|
||||
|
||||
|
||||
x = Tensor(np.ones([6, 8, 10], np.int32))
|
||||
y = Tensor(np.ones([6, 8, 10], np.int32))
|
||||
net = Net()
|
||||
with pytest.raises(ValueError):
|
||||
out = net(x, y)
|
||||
|
||||
|
||||
def test_while_scalar():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.x = 10
|
||||
|
||||
def construct(self, x, y):
|
||||
i = 0
|
||||
t = 0
|
||||
|
@ -742,17 +754,20 @@ def test_while_scalar():
|
|||
t = t + x + y
|
||||
i = i + 1
|
||||
return t
|
||||
|
||||
net = Net()
|
||||
x = Tensor(np.ones([6, 8, 10], np.int32))
|
||||
y = Tensor(np.ones([6, 8, 10], np.int32))
|
||||
out = net(x, y)
|
||||
|
||||
|
||||
def test_while_tensor():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.t = Tensor(np.ones([6, 8, 10], np.int32))
|
||||
self.count = Tensor(np.array([10], np.int32))
|
||||
|
||||
def construct(self, x, y):
|
||||
i = 0
|
||||
t = self.t
|
||||
|
@ -760,6 +775,7 @@ def test_while_tensor():
|
|||
t = t + x + y
|
||||
i = i + 1
|
||||
return t
|
||||
|
||||
net = Net()
|
||||
x = Tensor(np.ones([6, 8, 10], np.int32))
|
||||
y = Tensor(np.ones([6, 8, 10], np.int32))
|
||||
|
@ -770,7 +786,7 @@ def test_large_for_loop():
|
|||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.flatten = P.ReLU() #nn.Flatten()
|
||||
self.flatten = P.ReLU() # nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
for elem in range(1, 1900):
|
||||
|
@ -791,7 +807,7 @@ def test_large_for_loop_with_continue_break():
|
|||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.flatten = P.ReLU() #nn.Flatten()
|
||||
self.flatten = P.ReLU() # nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
idx = 0
|
||||
|
@ -854,7 +870,7 @@ def test_tensor_all_construct_lack_branch():
|
|||
if input1.all():
|
||||
return self.logicaland(input1, input2)
|
||||
while input1.any():
|
||||
return self.logicalor(input1, input2)
|
||||
return self.logicalor(input1, input2)
|
||||
# NOTICE: here missing return statement, default return None
|
||||
|
||||
input_np_1 = np.random.choice([True], size=(2, 3, 4, 5))
|
||||
|
@ -891,28 +907,29 @@ def test_parser_switch_layer_func_primitive():
|
|||
def test_recursive_call():
|
||||
class Net(nn.Cell):
|
||||
""" Net definition """
|
||||
|
||||
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.fc = nn.Dense(10, 10) # padding=0
|
||||
#self.net2 = Net2()
|
||||
|
||||
# self.net2 = Net2()
|
||||
|
||||
def construct(self, x):
|
||||
net2 = Net2()
|
||||
x = net2(x)
|
||||
out = self.fc(x)
|
||||
return out
|
||||
|
||||
|
||||
class Net2(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net2, self).__init__()
|
||||
self.net = Net()
|
||||
self.fc = nn.Dense(10, 10)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.net(x)
|
||||
out = self.fc(x)
|
||||
return out
|
||||
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
|
||||
old_max_call_depth = context.get_context('max_call_depth')
|
||||
context.set_context(max_call_depth=80)
|
||||
|
@ -949,7 +966,6 @@ def test_switch_layer_shape_join_failed():
|
|||
|
||||
funcs = (func1, func2)
|
||||
|
||||
|
||||
net = AddFuncNet(funcs, func3)
|
||||
|
||||
inp = Tensor(np.random.randn(2, 3, 4, 5).astype(np.float32))
|
||||
|
@ -980,7 +996,6 @@ def test_switch_layer_dtype_join_failed():
|
|||
x = self.op(x)
|
||||
return x
|
||||
|
||||
|
||||
func1 = nn.ReLU()
|
||||
func2 = Cast(mstype.int32)
|
||||
funcs = (func1, func2)
|
||||
|
|
|
@ -14,8 +14,8 @@
|
|||
# ============================================================================
|
||||
""" test math ops """
|
||||
import functools
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.context as context
|
||||
|
@ -31,6 +31,7 @@ from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
|||
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
||||
from ....mindspore_test_framework.pipeline.forward.verify_exception \
|
||||
import pipeline_for_verify_exception_for_case_by_case_config
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
# pylint: disable=W0613
|
||||
|
|
|
@ -35,7 +35,6 @@ from ....mindspore_test_framework.pipeline.gradient.compile_gradient \
|
|||
import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
|
||||
from ....ops_common import convert
|
||||
|
||||
|
||||
grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
|
||||
|
||||
|
||||
|
@ -266,6 +265,7 @@ class ScatterNdSub(nn.Cell):
|
|||
out = self.scatter_nd_sub(self.ref, indices, updates)
|
||||
return out
|
||||
|
||||
|
||||
class ScatterNdAdd(nn.Cell):
|
||||
"""ScatterNdAdd net definition"""
|
||||
|
||||
|
@ -311,7 +311,7 @@ class ScatterDiv(nn.Cell):
|
|||
def __init__(self, ref_shape, dtype=np.float32, use_locking=False):
|
||||
super(ScatterDiv, self).__init__()
|
||||
self.scatter_div = P.ScatterDiv(use_locking)
|
||||
self.ref = Parameter(Tensor(np.ones(ref_shape, dtype)*10), name="ref")
|
||||
self.ref = Parameter(Tensor(np.ones(ref_shape, dtype) * 10), name="ref")
|
||||
|
||||
def construct(self, indices, updates):
|
||||
out = self.scatter_div(self.ref, indices, updates)
|
||||
|
@ -633,7 +633,7 @@ class CTCGreedyDecoderNet(nn.Cell):
|
|||
self.assert_op = P.Assert(300)
|
||||
|
||||
def construct(self, inputs, sequence_length):
|
||||
out = self.ctc_greedy_decoder(inputs,sequence_length)
|
||||
out = self.ctc_greedy_decoder(inputs, sequence_length)
|
||||
self.assert_op(True, (out[0], out[1], out[2], out[3]))
|
||||
return out[2]
|
||||
|
||||
|
@ -711,12 +711,13 @@ class BasicLSTMCellNet(nn.Cell):
|
|||
def construct(self, x, h, c, w, b):
|
||||
return self.lstm(x, h, c, w, b)
|
||||
|
||||
|
||||
class EditDistance(nn.Cell):
|
||||
def __init__(self, hypothesis_shape, truth_shape, normalize=True):
|
||||
super(EditDistance, self).__init__()
|
||||
self.edit_distance = P.EditDistance(normalize)
|
||||
self.hypothesis_shape = hypothesis_shape
|
||||
self.truth_shape =truth_shape
|
||||
self.truth_shape = truth_shape
|
||||
|
||||
def construct(self, hypothesis_indices, hypothesis_values, truth_indices, truth_values):
|
||||
return self.edit_distance(hypothesis_indices, hypothesis_values, self.hypothesis_shape,
|
||||
|
|
|
@ -20,13 +20,11 @@ import mindspore.context as context
|
|||
from mindspore import Tensor
|
||||
from mindspore import amp
|
||||
from mindspore import nn
|
||||
from mindspore.train import Model
|
||||
from mindspore.context import ParallelMode
|
||||
from mindspore.common import dtype as mstype
|
||||
from ....dataset_mock import MindData
|
||||
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||
from mindspore.communication.management import init
|
||||
from tests.ut.python.model.resnet import resnet50
|
||||
from mindspore.context import ParallelMode
|
||||
from mindspore.train import Model
|
||||
from ....dataset_mock import MindData
|
||||
|
||||
|
||||
def setup_module(module):
|
||||
_ = module
|
||||
|
@ -144,6 +142,7 @@ def test_compile_model_train_O2():
|
|||
# not actual run, the metrics step will fail, check if compile ok.
|
||||
model.eval(dataset)
|
||||
|
||||
|
||||
def test_compile_model_train_O2_parallel():
|
||||
dataset_types = (np.float32, np.float32)
|
||||
dataset_shapes = ((16, 16), (16, 16))
|
||||
|
|
|
@ -141,6 +141,7 @@ def test_init_abnormal():
|
|||
with py.raises(TypeError):
|
||||
init.initializer([''], [5, 4], ms.float32)
|
||||
|
||||
|
||||
def test_initializer_reinit():
|
||||
weights = init.initializer("XavierUniform", shape=(10, 1, 10, 10), dtype=ms.float16)
|
||||
assert weights.dtype == ms.float16
|
||||
|
@ -152,7 +153,8 @@ def test_initializer_reinit():
|
|||
weights = init.initializer(weights, (10, 1))
|
||||
assert weights.dtype == ms.float16
|
||||
assert weights.shape == (10, 1)
|
||||
|
||||
|
||||
|
||||
def test_init_xavier_uniform():
|
||||
""" test_init_xavier_uniform """
|
||||
gain = 1.2
|
||||
|
|
Loading…
Reference in New Issue