forked from mindspore-Ecosystem/mindspore
Add CPU kernels: TensorAdd, Sub, Mul, Div
This commit is contained in:
parent
55372b41fd
commit
a82577c00e
|
@ -0,0 +1,137 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/kernel_compiler/cpu/arithmetic_cpu_kernel.h"
|
||||
#include <thread>
|
||||
#include <string>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
template <typename T>
|
||||
void Add(const T *input1, const T *input2, T *out, size_t start, size_t end, bool is_number) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
out[i] = input1[i] + (is_number ? *input2 : input2[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Sub(const T *input1, const T *input2, T *out, size_t start, size_t end, bool is_number) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
out[i] = input1[i] - (is_number ? *input2 : input2[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Mul(const T *input1, const T *input2, T *out, size_t start, size_t end, bool is_number) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
out[i] = input1[i] * (is_number ? *input2 : input2[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Div(const T *input1, const T *input2, T *out, size_t start, size_t end, bool is_number) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
auto div_number = is_number ? *input2 : input2[i];
|
||||
if (div_number == 0) {
|
||||
MS_LOG(EXCEPTION) << "Cannot divided by 0!";
|
||||
}
|
||||
out[i] = input1[i] / div_number;
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void ArithmeticCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
if (kernel_name == prim::kPrimTensorAdd->name()) {
|
||||
operate_type_ = ADD;
|
||||
} else if (kernel_name == prim::kPrimSub->name()) {
|
||||
operate_type_ = SUB;
|
||||
} else if (kernel_name == prim::kPrimMul->name()) {
|
||||
operate_type_ = MUL;
|
||||
} else if (kernel_name == "Div") {
|
||||
operate_type_ = DIV;
|
||||
}
|
||||
|
||||
auto shape0 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto shape1 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
if (shape1.size() == 0) {
|
||||
is_number_ = true;
|
||||
} else {
|
||||
is_number_ = false;
|
||||
if (shape0.size() != shape1.size()) {
|
||||
MS_LOG(EXCEPTION) << "Input0 and input1 must has the same shape";
|
||||
}
|
||||
for (size_t i = 0; i < shape0.size(); ++i) {
|
||||
if (shape0[i] != shape1[i]) {
|
||||
MS_LOG(EXCEPTION) << "Input0 and input1 must has the same shape";
|
||||
}
|
||||
}
|
||||
}
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
if (dtype_ != AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 1)) {
|
||||
MS_LOG(EXCEPTION) << "Input0 and input1 must has the same data type";
|
||||
}
|
||||
}
|
||||
|
||||
bool ArithmeticCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Only support int32, float32, but actual data type is " << TypeIdLabel(dtype_);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ArithmeticCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
|
||||
T *input1 = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
T *input2 = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
T *output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
auto lens = inputs[0]->size / sizeof(T);
|
||||
MS_LOG(INFO) << "lens=" << lens;
|
||||
|
||||
const size_t thread_num = 24;
|
||||
std::vector<std::thread> threads;
|
||||
threads.reserve(thread_num);
|
||||
size_t start = 0;
|
||||
size_t once_compute_size = (lens + thread_num - 1) / thread_num;
|
||||
while (start < lens) {
|
||||
size_t end = (start + once_compute_size) > lens ? lens : (start + once_compute_size);
|
||||
if (operate_type_ == ADD) {
|
||||
threads.emplace_back(std::thread(Add<T>, input1, input2, output, start, end, is_number_));
|
||||
} else if (operate_type_ == SUB) {
|
||||
threads.emplace_back(std::thread(Sub<T>, input1, input2, output, start, end, is_number_));
|
||||
} else if (operate_type_ == MUL) {
|
||||
threads.emplace_back(std::thread(Mul<T>, input1, input2, output, start, end, is_number_));
|
||||
} else if (operate_type_ == DIV) {
|
||||
threads.emplace_back(std::thread(Div<T>, input1, input2, output, start, end, is_number_));
|
||||
}
|
||||
start += once_compute_size;
|
||||
}
|
||||
for (size_t i = 0; i < threads.size(); ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -13,8 +13,8 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SUB_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SUB_CPU_KERNEL_H_
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ARITHMETIC_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ARITHMETIC_CPU_KERNEL_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
|
@ -22,24 +22,35 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class SubCPUKernel : public CPUKernel {
|
||||
class ArithmeticCPUKernel : public CPUKernel {
|
||||
public:
|
||||
SubCPUKernel() : offset_(0) {}
|
||||
~SubCPUKernel() override = default;
|
||||
ArithmeticCPUKernel() = default;
|
||||
~ArithmeticCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
int offset_;
|
||||
bool is_number_{false};
|
||||
OperateType operate_type_{ADD};
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
Sub, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
SubCPUKernel);
|
||||
ArithmeticCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Sub, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel);
|
||||
MS_REG_CPU_KERNEL(
|
||||
Sub, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SUB_CPU_KERNEL_H_
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ARITHMETIC_CPU_KERNEL_H_
|
|
@ -0,0 +1,91 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/kernel_compiler/cpu/arithmetic_self_cpu_kernel.h"
|
||||
#include <cmath>
|
||||
#include <thread>
|
||||
#include <string>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
namespace {
|
||||
template <typename T>
|
||||
void Square(const T *in, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
out[i] = in[i] * in[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Sqrt(const T *in, T *out, size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
out[i] = sqrtf(in[i]);
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void ArithmeticSelfCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
if (kernel_name == prim::kPrimSquare->name()) {
|
||||
operate_type_ = SQUARE;
|
||||
} else if (kernel_name == prim::kPrimSqrt->name()) {
|
||||
operate_type_ = SQRT;
|
||||
}
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
}
|
||||
|
||||
bool ArithmeticSelfCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Only support float32, int32, but actual data type is " << TypeIdLabel(dtype_);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ArithmeticSelfCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<AddressPtr> &outputs) {
|
||||
T *input = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
T *output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
auto lens = inputs[0]->size / sizeof(T);
|
||||
MS_LOG(INFO) << "lens=" << lens;
|
||||
|
||||
const size_t thread_num = 24;
|
||||
std::vector<std::thread> threads;
|
||||
threads.reserve(thread_num);
|
||||
size_t start = 0;
|
||||
size_t once_compute_size = (lens + thread_num - 1) / thread_num;
|
||||
while (start < lens) {
|
||||
size_t end = (start + once_compute_size) > lens ? lens : (start + once_compute_size);
|
||||
if (operate_type_ == SQUARE) {
|
||||
threads.emplace_back(std::thread(Square<T>, input, output, start, end));
|
||||
} else if (operate_type_ == SQRT) {
|
||||
threads.emplace_back(std::thread(Sqrt<T>, input, output, start, end));
|
||||
}
|
||||
start += once_compute_size;
|
||||
}
|
||||
for (size_t i = 0; i < threads.size(); ++i) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,50 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ARITHMETIC_SELF_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ARITHMETIC_SELF_CPU_KERNEL_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class ArithmeticSelfCPUKernel : public CPUKernel {
|
||||
public:
|
||||
ArithmeticSelfCPUKernel() = default;
|
||||
~ArithmeticSelfCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
OperateType operate_type_{SQUARE};
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(Square, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Square, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ARITHMETIC_SELF_CPU_KERNEL_H_
|
|
@ -51,6 +51,7 @@ const char END[] = "end";
|
|||
const char SIZE[] = "size";
|
||||
const char USE_NESTEROV[] = "use_nesterov";
|
||||
const char GROUP[] = "group";
|
||||
enum OperateType { ADD = 0, SUB, MUL, DIV, SQUARE, SQRT };
|
||||
|
||||
class CPUKernel : public kernel::KernelMod {
|
||||
public:
|
||||
|
|
|
@ -1,90 +0,0 @@
|
|||
/**
|
||||
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/kernel_compiler/cpu/sub_cpu_kernel.h"
|
||||
#include <sys/time.h>
|
||||
#include <thread>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void SubCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
if (shape.size() == 1) {
|
||||
if (shape[0] != 1) {
|
||||
MS_LOG(EXCEPTION) << "input 1 only support scalar";
|
||||
}
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "input 1 only support scalar";
|
||||
}
|
||||
}
|
||||
|
||||
void sub_task(const int *in_addr, int *out_addr, size_t lens, int offset) {
|
||||
for (size_t i = 0; i < lens; i++) {
|
||||
out_addr[i] = in_addr[i] - offset;
|
||||
}
|
||||
}
|
||||
|
||||
bool SubCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
#if defined(_WIN32) || defined(_WIN64)
|
||||
auto start_time = std::chrono::steady_clock::now();
|
||||
#else
|
||||
struct timeval start_time, end_time;
|
||||
(void)gettimeofday(&start_time, nullptr);
|
||||
#endif
|
||||
auto input_addr = reinterpret_cast<int *>(inputs[0]->addr);
|
||||
auto output_addr = reinterpret_cast<int *>(outputs[0]->addr);
|
||||
offset_ = *reinterpret_cast<int *>(inputs[1]->addr);
|
||||
MS_LOG(INFO) << "offset: " << offset_;
|
||||
auto lens = inputs[0]->size / sizeof(int);
|
||||
if (lens < 10000) {
|
||||
for (size_t i = 0; i < lens; i++) {
|
||||
output_addr[i] = input_addr[i] - offset_;
|
||||
}
|
||||
} else {
|
||||
const size_t thread_num = 4;
|
||||
std::thread threads[4];
|
||||
size_t process_lens = (lens + thread_num - 1) / thread_num;
|
||||
size_t process_offset = 0;
|
||||
for (size_t i = 0; i < thread_num; i++) {
|
||||
threads[i] =
|
||||
std::thread(sub_task, input_addr + process_offset, output_addr + process_offset, process_lens, offset_);
|
||||
if (process_offset + process_lens > lens) {
|
||||
process_lens = lens - process_offset;
|
||||
process_offset = lens;
|
||||
} else {
|
||||
process_offset += process_lens;
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < thread_num; i++) {
|
||||
threads[i].join();
|
||||
}
|
||||
}
|
||||
#if defined(_WIN32) || defined(_WIN64)
|
||||
auto end_time = std::chrono::steady_clock::now();
|
||||
std::chrono::duration<double, std::ratio<1, 1000000>> cost = end_time - start_time;
|
||||
MS_LOG(INFO) << "SubscaleCPUKernel, used time: " << cost.count() << " us";
|
||||
#else
|
||||
(void)gettimeofday(&end_time, nullptr);
|
||||
uint64_t time = 1000000 * static_cast<uint64_t>(end_time.tv_sec - start_time.tv_sec);
|
||||
time += static_cast<uint64_t>(end_time.tv_usec - start_time.tv_usec);
|
||||
MS_LOG(INFO) << "SubCPUKernel, used time: " << time << " us";
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,46 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
|
||||
class SubNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(SubNet, self).__init__()
|
||||
self.sub = P.Sub()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.sub(x, y)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_sub():
|
||||
x = np.ones([2, 3, 4, 4]).astype(np.int32)
|
||||
y = 1
|
||||
net = SubNet()
|
||||
output = net(Tensor(x), Tensor(y, mindspore.int32))
|
||||
expect_output = np.zeros([2, 3, 4, 4]).astype(np.int)
|
||||
print(output)
|
||||
assert np.all(output.asnumpy() == expect_output)
|
|
@ -0,0 +1,44 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
|
||||
|
||||
class SquareNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(SquareNet, self).__init__()
|
||||
self.square = P.Square()
|
||||
|
||||
def construct(self, x):
|
||||
return self.square(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_square():
|
||||
x = np.array([1, 2, 3]).astype(np.float32)
|
||||
net = SquareNet()
|
||||
output = net(Tensor(x))
|
||||
expect_output = np.array([1, 4, 9]).astype(np.float32)
|
||||
print(output)
|
||||
assert np.all(output.asnumpy() == expect_output)
|
Loading…
Reference in New Issue