forked from mindspore-Ecosystem/mindspore
add cache ops for cpu and aicpu
This commit is contained in:
parent
990524c0e2
commit
a822966300
|
@ -0,0 +1,80 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/assign_cpu_kernel.h"
|
||||
#include <string>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void AssignCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
auto input_x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto input_y_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
|
||||
for (size_t i = 0; i < input_x_shape.size(); ++i) {
|
||||
batch_size_ *= input_x_shape[i];
|
||||
}
|
||||
|
||||
if (input_x_shape.size() != input_y_shape.size()) MS_LOG(EXCEPTION) << "x y must be same shape";
|
||||
for (size_t i = 0; i < input_x_shape.size(); ++i) {
|
||||
if (input_x_shape[i] != input_y_shape[i]) {
|
||||
MS_LOG(EXCEPTION) << "x y must be same shape";
|
||||
}
|
||||
}
|
||||
input_x_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
|
||||
if (input_x_dtype_ == kNumberTypeFloat32 || input_x_dtype_ == kNumberTypeInt32) {
|
||||
input_x_dtype_size_ = 4;
|
||||
} else if (input_x_dtype_ == kNumberTypeFloat64 || input_x_dtype_ == kNumberTypeInt64) {
|
||||
input_x_dtype_size_ = 8;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "input_x dtype only support float32, float64, int32, int64";
|
||||
}
|
||||
}
|
||||
|
||||
bool AssignCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (input_x_dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (input_x_dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else if (input_x_dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
} else if (input_x_dtype_ == kNumberTypeFloat64) {
|
||||
LaunchKernel<double>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "indices dtype only support float32, float64, int32, int64";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void AssignCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
T *input_x = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
T *input_y = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
size_t total_size = input_x_dtype_size_ * batch_size_;
|
||||
|
||||
int ret = memcpy_s(input_x, total_size, input_y, total_size);
|
||||
if (ret != 0) {
|
||||
MS_LOG(EXCEPTION) << "memcpy_s error, errorno" << ret;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,67 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ASSIGN_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ASSIGN_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class AssignCPUKernel : public CPUKernel {
|
||||
public:
|
||||
AssignCPUKernel() = default;
|
||||
~AssignCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
size_t batch_size_{1};
|
||||
TypeId input_x_dtype_{kTypeUnknown};
|
||||
size_t input_x_dtype_size_ = 4;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
Assign, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
AssignCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
Assign, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
AssignCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
Assign,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
AssignCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
Assign,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
AssignCPUKernel);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UPDATE_CACHE_CPU_KERNEL_H_
|
|
@ -0,0 +1,112 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/cache_swap_hashmap_cpu_kernel.h"
|
||||
#include <string>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
void Compress(HashmapEntry<T> *entry_p, const size_t &length, T entry) {
|
||||
T i = (entry + 1) % length, off = 1;
|
||||
for (; !entry_p[i].IsEmpty(); i = (i + 1) % length, off++) {
|
||||
if (entry_p[i].tag > off) {
|
||||
entry_p[entry].key = entry_p[i].key;
|
||||
entry_p[entry].value = entry_p[i].value;
|
||||
entry_p[entry].step = entry_p[i].step;
|
||||
entry_p[entry].tag = entry_p[i].tag - off;
|
||||
entry_p[i].SetEmpty();
|
||||
off = 0;
|
||||
entry = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void CacheSwapHashmapCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
auto hashmap_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto emb_idx_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
|
||||
if (hashmap_shape.size() != 2) {
|
||||
MS_LOG(EXCEPTION) << "Dimension of HashMap must be 2, (n, 4)";
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < emb_idx_shape.size(); ++i) {
|
||||
batch_size_ *= emb_idx_shape[i];
|
||||
}
|
||||
|
||||
hashmap_length_ = hashmap_shape[0];
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
}
|
||||
|
||||
bool CacheSwapHashmapCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "Only support int32, int64";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CacheSwapHashmapCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
HashmapEntry<T> *hashmap = reinterpret_cast<HashmapEntry<T> *>(inputs[0]->addr);
|
||||
auto miss_emb_idx = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
step_ = *reinterpret_cast<T *>(inputs[2]->addr);
|
||||
auto swap_cache_idx = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
auto old_emb_idx = reinterpret_cast<T *>(outputs[1]->addr);
|
||||
|
||||
for (size_t i = 0; i < batch_size_; ++i) {
|
||||
if (miss_emb_idx[i] < 0) {
|
||||
swap_cache_idx[i] = -1;
|
||||
old_emb_idx[i] = -1;
|
||||
} else {
|
||||
T emb_idx = miss_emb_idx[i];
|
||||
T entry = HashFunc(emb_idx, hashmap_length_);
|
||||
T tag_count = 1;
|
||||
while (!hashmap[entry].IsEmpty()) {
|
||||
entry = (entry + 1) % hashmap_length_;
|
||||
tag_count++;
|
||||
}
|
||||
|
||||
hashmap[entry].key = emb_idx;
|
||||
hashmap[entry].step = step_;
|
||||
hashmap[entry].tag = tag_count;
|
||||
|
||||
T tmp_entry = (entry + 1) % hashmap_length_;
|
||||
|
||||
while (hashmap[tmp_entry].IsEmpty() || hashmap[tmp_entry].IsUsing(step_)) {
|
||||
tmp_entry = (tmp_entry + 1) % hashmap_length_;
|
||||
}
|
||||
|
||||
swap_cache_idx[i] = hashmap[tmp_entry].value;
|
||||
old_emb_idx[i] = hashmap[tmp_entry].key;
|
||||
hashmap[entry].value = swap_cache_idx[i];
|
||||
hashmap[tmp_entry].SetEmpty();
|
||||
Compress(hashmap, hashmap_length_, tmp_entry);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,89 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CACHE_SWAP_HASHMAP_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CACHE_SWAP_HASHMAP_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
class CacheSwapHashmapCPUKernel : public CPUKernel {
|
||||
public:
|
||||
CacheSwapHashmapCPUKernel() = default;
|
||||
~CacheSwapHashmapCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
size_t batch_size_{1};
|
||||
size_t hashmap_length_{1};
|
||||
int64_t step_{0};
|
||||
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(CacheSwapHashmap,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
CacheSwapHashmapCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(CacheSwapHashmap,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
CacheSwapHashmapCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(CacheSwapHashmap,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
CacheSwapHashmapCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(CacheSwapHashmap,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
CacheSwapHashmapCPUKernel);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_CACHE_SWAP_HASHMAP_CPU_KERNEL_H_
|
|
@ -49,6 +49,16 @@ MS_REG_CPU_KERNEL(
|
|||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EmbeddingLookUpCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
EmbeddingLookUpCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
EmbeddingLookUpCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
EmbeddingLookup,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32),
|
||||
|
|
|
@ -0,0 +1,207 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/map_cache_idx_cpu_kernel.h"
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
struct HashmapEntry {
|
||||
T key;
|
||||
T value;
|
||||
T step;
|
||||
T tag;
|
||||
|
||||
bool IsEmpty() {
|
||||
if (this->tag == NULLTAG)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
bool IsUsing(const T &train_step) {
|
||||
if (this->step >= (train_step - 1))
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
bool IsKey(const T &emb_idx) {
|
||||
if (this->key == emb_idx)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
void SetEmpty() { this->tag = NULLTAG; }
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
T HashFunc(const T &key, const size_t &m) {
|
||||
return (T)(((0.6180339 * key) - floor(0.6180339 * key)) * m);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Compress(HashmapEntry<T> *entry_p, const size_t &length, T entry) {
|
||||
T i = (entry + 1) % length, off = 1;
|
||||
for (; !entry_p[i].IsEmpty(); i = (i + 1) % length, off++) {
|
||||
if (entry_p[i].tag > off) {
|
||||
entry_p[entry].key = entry_p[i].key;
|
||||
entry_p[entry].value = entry_p[i].value;
|
||||
entry_p[entry].step = entry_p[i].step;
|
||||
entry_p[entry].tag = entry_p[i].tag - off;
|
||||
entry_p[i].SetEmpty();
|
||||
off = 0;
|
||||
entry = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void MapCacheIdxCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
auto hashmap_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto emb_idx_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
|
||||
if (hashmap_shape.size() != 2) {
|
||||
MS_LOG(EXCEPTION) << "Dimension of HashMap must be 2, (n, 4)";
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < emb_idx_shape.size(); ++i) {
|
||||
batch_size_ *= emb_idx_shape[i];
|
||||
}
|
||||
|
||||
hashmap_length_ = hashmap_shape[0];
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
}
|
||||
|
||||
bool MapCacheIdxCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "Only support int32, int64";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void MapCacheIdxCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
HashmapEntry<T> *hashmap = reinterpret_cast<HashmapEntry<T> *>(inputs[0]->addr);
|
||||
auto input_indices = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
T *step_ = reinterpret_cast<T *>(inputs[2]->addr);
|
||||
T emb_max_num = *reinterpret_cast<T *>(inputs[3]->addr);
|
||||
T cache_max_num = *reinterpret_cast<T *>(inputs[4]->addr);
|
||||
auto output_cache_idx = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
auto output_old_emb_idx = reinterpret_cast<T *>(outputs[1]->addr);
|
||||
auto output_miss_emb_idx = reinterpret_cast<T *>(outputs[2]->addr);
|
||||
auto output_swap_cache_idx = reinterpret_cast<T *>(outputs[3]->addr);
|
||||
|
||||
std::vector<T> output_miss_idx(batch_size_, -1);
|
||||
|
||||
float total_count = 0;
|
||||
int count_size = 0;
|
||||
float hit_count = 0;
|
||||
|
||||
// search_cache_idx
|
||||
for (size_t i = 0; i < batch_size_; ++i) {
|
||||
if (input_indices[i] == emb_max_num) {
|
||||
output_miss_idx[i] = -1;
|
||||
output_cache_idx[i] = cache_max_num;
|
||||
output_miss_emb_idx[i] = -1;
|
||||
continue;
|
||||
}
|
||||
|
||||
T key = input_indices[i];
|
||||
T tmp_entry = HashFunc(key, hashmap_length_);
|
||||
|
||||
int count = 1;
|
||||
count_size += 1;
|
||||
while ((!hashmap[tmp_entry].IsEmpty() && !hashmap[tmp_entry].IsKey(key))) {
|
||||
tmp_entry = (tmp_entry + 1) % hashmap_length_;
|
||||
count += 1;
|
||||
}
|
||||
|
||||
total_count += count;
|
||||
if (hashmap[tmp_entry].IsEmpty()) {
|
||||
output_miss_idx[i] = i;
|
||||
output_miss_emb_idx[i] = key;
|
||||
output_cache_idx[i] = -1;
|
||||
} else {
|
||||
hit_count += 1;
|
||||
output_miss_idx[i] = -1;
|
||||
output_cache_idx[i] = hashmap[tmp_entry].value;
|
||||
hashmap[tmp_entry].step = step_[0];
|
||||
output_miss_emb_idx[i] = -1;
|
||||
}
|
||||
}
|
||||
MS_LOG(INFO) << "avg search count: " << total_count / count_size;
|
||||
MS_LOG(INFO) << "cache hit rate: " << hit_count / count_size;
|
||||
|
||||
// swap hash map
|
||||
for (size_t i = 0; i < batch_size_; ++i) {
|
||||
if (output_miss_emb_idx[i] < 0) {
|
||||
output_swap_cache_idx[i] = -1;
|
||||
output_old_emb_idx[i] = -1;
|
||||
} else {
|
||||
T emb_idx = output_miss_emb_idx[i];
|
||||
T entry = HashFunc(emb_idx, hashmap_length_);
|
||||
T tag_count = 1;
|
||||
while (!hashmap[entry].IsEmpty()) {
|
||||
entry = (entry + 1) % hashmap_length_;
|
||||
tag_count++;
|
||||
}
|
||||
|
||||
hashmap[entry].key = emb_idx;
|
||||
hashmap[entry].step = step_[0];
|
||||
hashmap[entry].tag = tag_count;
|
||||
|
||||
T tmp_entry = (entry + 1) % hashmap_length_;
|
||||
|
||||
while (hashmap[tmp_entry].IsEmpty() || hashmap[tmp_entry].IsUsing(step_[0])) {
|
||||
tmp_entry = (tmp_entry + 1) % hashmap_length_;
|
||||
}
|
||||
|
||||
output_swap_cache_idx[i] = hashmap[tmp_entry].value;
|
||||
output_old_emb_idx[i] = hashmap[tmp_entry].key;
|
||||
hashmap[entry].value = output_swap_cache_idx[i];
|
||||
hashmap[tmp_entry].SetEmpty();
|
||||
Compress(hashmap, hashmap_length_, tmp_entry);
|
||||
}
|
||||
}
|
||||
|
||||
// update step
|
||||
step_[0] += 1;
|
||||
|
||||
// update cache idx
|
||||
for (size_t i = 0; i < batch_size_; ++i) {
|
||||
if (output_miss_idx[i] < 0 || output_miss_idx[i] >= cache_max_num) {
|
||||
continue;
|
||||
}
|
||||
output_cache_idx[i] = output_swap_cache_idx[i];
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,105 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MAP_CACHE_IDX_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MAP_CACHE_IDX_CPU_KERNEL_H_
|
||||
|
||||
#include <math.h>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
#define NULLTAG 0
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
class MapCacheIdxCPUKernel : public CPUKernel {
|
||||
public:
|
||||
MapCacheIdxCPUKernel() = default;
|
||||
~MapCacheIdxCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
size_t batch_size_{1};
|
||||
size_t hashmap_length_{1};
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(MapCacheIdx,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
MapCacheIdxCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(MapCacheIdx,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
MapCacheIdxCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(MapCacheIdx,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
MapCacheIdxCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(MapCacheIdx,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
MapCacheIdxCPUKernel);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_
|
|
@ -0,0 +1,104 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/search_cache_idx_cpu_kernel.h"
|
||||
#include <string>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void SearchCacheIdxCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
auto hashmap_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
auto emb_idx_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
|
||||
if (hashmap_shape.size() != 2) {
|
||||
MS_LOG(EXCEPTION) << "Dimension of HashMap must be 2, (n, 4)";
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < emb_idx_shape.size(); ++i) {
|
||||
batch_size_ *= emb_idx_shape[i];
|
||||
}
|
||||
|
||||
hashmap_length_ = hashmap_shape[0];
|
||||
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
}
|
||||
|
||||
bool SearchCacheIdxCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "Only support int32, int64";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SearchCacheIdxCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
HashmapEntry<T> *hashmap = reinterpret_cast<HashmapEntry<T> *>(inputs[0]->addr);
|
||||
auto input_indices = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
step_ = *reinterpret_cast<T *>(inputs[2]->addr);
|
||||
emb_max_num = *reinterpret_cast<T *>(inputs[3]->addr);
|
||||
cache_max_num = *reinterpret_cast<T *>(inputs[4]->addr);
|
||||
auto output_cache_idx = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
auto output_miss_idx = reinterpret_cast<T *>(outputs[1]->addr);
|
||||
auto output_miss_emb_idx = reinterpret_cast<T *>(outputs[2]->addr);
|
||||
|
||||
float total_count = 0;
|
||||
int count_size = 0;
|
||||
float hit_count = 0;
|
||||
for (size_t i = 0; i < batch_size_; ++i) {
|
||||
if (input_indices[i] == emb_max_num) {
|
||||
output_miss_idx[i] = -1;
|
||||
output_cache_idx[i] = cache_max_num;
|
||||
output_miss_emb_idx[i] = -1;
|
||||
continue;
|
||||
}
|
||||
|
||||
T key = input_indices[i];
|
||||
T tmp_entry = HashFunc(key, hashmap_length_);
|
||||
|
||||
int count = 1;
|
||||
count_size += 1;
|
||||
while ((!hashmap[tmp_entry].IsEmpty() && !hashmap[tmp_entry].IsKey(key))) {
|
||||
tmp_entry = (tmp_entry + 1) % hashmap_length_;
|
||||
count += 1;
|
||||
}
|
||||
|
||||
total_count += count;
|
||||
if (hashmap[tmp_entry].IsEmpty()) {
|
||||
output_miss_idx[i] = i;
|
||||
output_miss_emb_idx[i] = key;
|
||||
output_cache_idx[i] = -1;
|
||||
} else {
|
||||
hit_count += 1;
|
||||
output_miss_idx[i] = -1;
|
||||
output_cache_idx[i] = hashmap[tmp_entry].value;
|
||||
hashmap[tmp_entry].step = step_;
|
||||
output_miss_emb_idx[i] = -1;
|
||||
}
|
||||
}
|
||||
MS_LOG(INFO) << "avg search count: " << total_count / count_size;
|
||||
MS_LOG(INFO) << "cache hit rate: " << hit_count / count_size;
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,140 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_
|
||||
|
||||
#include <math.h>
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
#define NULLTAG 0
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
struct HashmapEntry {
|
||||
T key;
|
||||
T value;
|
||||
T step;
|
||||
T tag;
|
||||
|
||||
bool IsEmpty() {
|
||||
if (this->tag == NULLTAG)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
bool IsUsing(const T &train_step) {
|
||||
if (this->step >= (train_step - 1))
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
bool IsKey(const T &emb_idx) {
|
||||
if (this->key == emb_idx)
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
|
||||
void SetEmpty() { this->tag = NULLTAG; }
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
T HashFunc(const T &key, const size_t &m) {
|
||||
return (T)(((0.6180339 * key) - floor(0.6180339 * key)) * m);
|
||||
}
|
||||
|
||||
class SearchCacheIdxCPUKernel : public CPUKernel {
|
||||
public:
|
||||
SearchCacheIdxCPUKernel() = default;
|
||||
~SearchCacheIdxCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
size_t batch_size_{1};
|
||||
size_t hashmap_length_{1};
|
||||
size_t step_{0};
|
||||
int64_t emb_max_num = 999999999;
|
||||
int64_t cache_max_num = 999999999;
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(SearchCacheIdx,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SearchCacheIdxCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(SearchCacheIdx,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
SearchCacheIdxCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(SearchCacheIdx,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
SearchCacheIdxCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(SearchCacheIdx,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SearchCacheIdxCPUKernel);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SEARCH_CACHE_IDX_CPU_KERNEL_H_
|
|
@ -0,0 +1,85 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/update_cache_cpu_kernel.h"
|
||||
#include <string>
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
void UpdateCacheCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
auto indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
|
||||
auto update_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
|
||||
if (indices_shape.size() < 2) {
|
||||
MS_LOG(EXCEPTION) << "indices shape less than 2";
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < indices_shape.size(); ++i) {
|
||||
batch_size_ *= indices_shape[i];
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < update_shape.size(); ++i) {
|
||||
update_size_ *= update_shape[i];
|
||||
}
|
||||
update_length_ = update_size_ / batch_size_;
|
||||
input_x_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
|
||||
indices_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 1);
|
||||
|
||||
if (input_x_dtype_ == kNumberTypeFloat32 || input_x_dtype_ == kNumberTypeInt32) {
|
||||
input_x_dtype_size_ = 4;
|
||||
} else if (input_x_dtype_ == kNumberTypeFloat64 || input_x_dtype_ == kNumberTypeInt64) {
|
||||
input_x_dtype_size_ = 8;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "input_x dtype only support float32, float64, int32, int64";
|
||||
}
|
||||
}
|
||||
|
||||
bool UpdateCacheCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (indices_dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (indices_dtype_ == kNumberTypeInt64) {
|
||||
LaunchKernel<int64_t>(inputs, outputs);
|
||||
} else {
|
||||
MS_LOG(ERROR) << "indices dtype only support int32, int64";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void UpdateCacheCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
char *input_x = reinterpret_cast<char *>(inputs[0]->addr);
|
||||
T *indices = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
char *update = reinterpret_cast<char *>(inputs[2]->addr);
|
||||
max_num_ = *reinterpret_cast<T *>(inputs[3]->addr);
|
||||
|
||||
size_t one_length_size = input_x_dtype_size_ * update_length_;
|
||||
for (size_t i = 0; i < batch_size_; ++i) {
|
||||
if (indices[i] < 0 || indices[i] >= max_num_) continue;
|
||||
|
||||
char *tmp = update + i * one_length_size;
|
||||
int ret = memcpy_s(input_x + indices[i] * one_length_size, one_length_size, tmp, one_length_size);
|
||||
if (ret != 0) {
|
||||
MS_LOG(EXCEPTION) << "memcpy_s error, errorno" << ret;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,108 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UPDATE_CACHE_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UPDATE_CACHE_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include <unordered_map>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
class UpdateCacheCPUKernel : public CPUKernel {
|
||||
public:
|
||||
UpdateCacheCPUKernel() = default;
|
||||
~UpdateCacheCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
template <typename T>
|
||||
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
|
||||
|
||||
private:
|
||||
size_t batch_size_{1};
|
||||
size_t update_size_{1};
|
||||
size_t step_{0};
|
||||
size_t update_length_{1};
|
||||
int64_t max_num_ = 99999999;
|
||||
TypeId input_x_dtype_{kTypeUnknown};
|
||||
TypeId indices_dtype_{kTypeUnknown};
|
||||
size_t input_x_dtype_size_ = 4;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(UpdateCache,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
UpdateCacheCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(UpdateCache,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
UpdateCacheCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(UpdateCache,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
UpdateCacheCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(UpdateCache,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
UpdateCacheCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(UpdateCache,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
UpdateCacheCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(UpdateCache,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
UpdateCacheCPUKernel);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UPDATE_CACHE_CPU_KERNEL_H_
|
|
@ -38,6 +38,10 @@ from .mirror_pad_grad import _mirror_pad_grad_aicpu
|
|||
from .standard_normal import _standard_normal_aicpu
|
||||
from .gamma import _gamma_aicpu
|
||||
from .poisson import _poisson_aicpu
|
||||
from .update_cache import _update_cache_aicpu
|
||||
from .search_cache_idx import _search_cache_idx_aicpu
|
||||
from .cache_swap_hashmap import _cache_swap_hashmap_aicpu
|
||||
from .cache_swap_table import _cache_swap_table_aicpu
|
||||
from .uniform_int import _uniform_int_aicpu
|
||||
from .uniform_real import _uniform_real_aicpu
|
||||
from .standard_laplace import _standard_laplace_aicpu
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""CacheSwapHashmap op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
cache_swap_hashmap_op_info = AiCPURegOp("CacheSwapHashmap") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "hashmap", "required") \
|
||||
.input(1, "miss_emb_idx", "required") \
|
||||
.input(2, "step", "required") \
|
||||
.output(0, "swap_cache_idx", "required") \
|
||||
.output(1, "old_emb_idx", "required") \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(cache_swap_hashmap_op_info)
|
||||
def _cache_swap_hashmap_aicpu():
|
||||
"""CacheSwapHashmap AiCPU register"""
|
||||
return
|
|
@ -0,0 +1,102 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""CacheSwapHashmap op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
cache_swap_table_op_info = AiCPURegOp("CacheSwapTable") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "cache_table", "required") \
|
||||
.input(1, "swap_cache_idx", "required") \
|
||||
.input(2, "miss_value", "required") \
|
||||
.output(0, "old_value", "required") \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, \
|
||||
DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I32_Default, \
|
||||
DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, \
|
||||
DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default, \
|
||||
DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, \
|
||||
DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I32_Default, \
|
||||
DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I32_Default, \
|
||||
DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I32_Default, \
|
||||
DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, \
|
||||
DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, \
|
||||
DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I32_Default, \
|
||||
DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I32_Default, \
|
||||
DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I64_Default, \
|
||||
DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I64_Default, \
|
||||
DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I64_Default, \
|
||||
DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I64_Default, \
|
||||
DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I64_Default, \
|
||||
DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I64_Default, \
|
||||
DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, \
|
||||
DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, \
|
||||
DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, \
|
||||
DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I64_Default, \
|
||||
DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I64_Default, \
|
||||
DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I64_Default, \
|
||||
DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default, \
|
||||
DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, \
|
||||
DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I64_Default, \
|
||||
DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.I64_Default, \
|
||||
DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.I64_Default, \
|
||||
DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.I64_Default, \
|
||||
DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, \
|
||||
DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, \
|
||||
DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.I64_Default, \
|
||||
DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.I64_Default, \
|
||||
DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(cache_swap_table_op_info)
|
||||
def _cache_swap_table_aicpu():
|
||||
"""CacheSwapTable AiCPU register"""
|
||||
return
|
|
@ -0,0 +1,51 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""EmbeddingLookup op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
search_cache_idx_op_info = AiCPURegOp("SearchCacheIdx") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "hashmap", "required") \
|
||||
.input(1, "indices", "required") \
|
||||
.input(2, "step", "required") \
|
||||
.input(3, "emb_max_num", "required") \
|
||||
.input(4, "cache_max_num", "required") \
|
||||
.output(0, "cache_idx", "required") \
|
||||
.output(1, "miss_idx_1d", "required") \
|
||||
.output(2, "miss_emb_idx", "required") \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default,
|
||||
DataType.I32_Default, DataType.I32_Default, DataType.I32_Default,
|
||||
DataType.I32_Default, DataType.I32_Default,
|
||||
DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default,
|
||||
DataType.I32_Default, DataType.I32_Default, DataType.I32_Default,
|
||||
DataType.I64_Default, DataType.I64_Default,
|
||||
DataType.I64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default,
|
||||
DataType.I64_Default, DataType.I64_Default, DataType.I64_Default,
|
||||
DataType.I32_Default, DataType.I32_Default,
|
||||
DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default,
|
||||
DataType.I64_Default, DataType.I64_Default, DataType.I64_Default,
|
||||
DataType.I64_Default, DataType.I64_Default,
|
||||
DataType.I64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(search_cache_idx_op_info)
|
||||
def _search_cache_idx_aicpu():
|
||||
"""SearchCacheIdx AiCPU register"""
|
||||
return
|
|
@ -0,0 +1,44 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""UpdateCache op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
update_cache_op_info = AiCPURegOp("UpdateCache") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "input_x", "required") \
|
||||
.input(1, "indices", "required") \
|
||||
.input(2, "update", "required") \
|
||||
.input(3, "max_num", "required") \
|
||||
.output(0, "out", "required") \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default,
|
||||
DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default,
|
||||
DataType.F32_Default, DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I32_Default,
|
||||
DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default,
|
||||
DataType.I32_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default,
|
||||
DataType.F32_Default, DataType.I64_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default,
|
||||
DataType.I64_Default, DataType.I64_Default, DataType.I64_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(update_cache_op_info)
|
||||
def _update_cache_aicpu():
|
||||
"""UpdateCache AiCPU register"""
|
||||
return
|
|
@ -89,6 +89,7 @@ from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg
|
|||
CusMatMulCubeDenseRight,
|
||||
CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky)
|
||||
from .sparse_ops import SparseToDense
|
||||
from ._cache_ops import CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx
|
||||
|
||||
__all__ = [
|
||||
'Unique',
|
||||
|
|
|
@ -0,0 +1,267 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""cache_ops"""
|
||||
from ..._checkparam import Validator as validator
|
||||
from ...common import dtype as mstype
|
||||
from ..primitive import PrimitiveWithInfer, prim_attr_register
|
||||
from .. import signature as sig
|
||||
|
||||
|
||||
class UpdateCache(PrimitiveWithInfer):
|
||||
"""
|
||||
Update the value fo input_x, similar to ScatterNdUpdate.
|
||||
The diffirent is that UpdateCache will not update when indices < 0 or indices >= max_num.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Parameter) - Parameter which is going to be updated.
|
||||
- **indices** (Tensor) - Update indices of input_x.
|
||||
- **updates** (Tensor) - The update values.
|
||||
|
||||
Outputs:
|
||||
- **out** (Tensor) - Returns a [1] Tensor, which is not usefull.
|
||||
"""
|
||||
__mindspore_signature__ = (
|
||||
sig.make_sig('input_x', sig.sig_rw.RW_WRITE,
|
||||
dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('indices', dtype=sig.sig_dtype.T1),
|
||||
sig.make_sig('updates', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('max_num', dtype=sig.sig_dtype.T1)
|
||||
)
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init UpdateCache"""
|
||||
|
||||
self.init_prim_io_names(inputs=['input_x', 'indices', 'update', 'max_num'],
|
||||
outputs=['out'])
|
||||
|
||||
def infer_shape(self, input_x_shape, indices_shape, update_shape, max_num_shape):
|
||||
|
||||
if len(indices_shape) < 2:
|
||||
raise ValueError("The dimension of 'indices' in UpdateCache must >= 2, "
|
||||
"but got %d." % len(indices_shape))
|
||||
return [1]
|
||||
|
||||
def infer_dtype(self, input_x_dtype, indices_dtype, update_dtype, max_num_dtype):
|
||||
args = {"indices": indices_dtype}
|
||||
validator.check_tensor_type_same(args, mstype.int_type, self.name)
|
||||
return input_x_dtype
|
||||
|
||||
|
||||
class SearchCacheIdx(PrimitiveWithInfer):
|
||||
"""
|
||||
Search the keys of a hashmap, and return the values.
|
||||
|
||||
Inputs:
|
||||
- **hashmap** (Parameter) - The dim of hashmap is (n, 4), which cols represent the `key, value, step, tag`.
|
||||
`key, value`: Map the indices of big table and cache table.
|
||||
`step`: The resent step, when searching the key, it will be updated at the same time.
|
||||
`step` can make sure the indices which are using in the last step will not be deleted in hashmap.
|
||||
`tag`: We use linear probing(`h(k, i) = (h(k) + i) % m`) to solve hash conflicts.
|
||||
tag is the count of linear probing times of the key. If `tag == 0`, means that the entry is empty.
|
||||
The Hash Function is:
|
||||
`((0.6180339 * key) - floor(0.618033 * key)) * hashmap_length`, in order to avoid data clustering.
|
||||
- **indices** (Tensor) - The indices which are keys of hashmap.
|
||||
- **step** (int) - The current step when searching.
|
||||
- **emb_max_num** (int) - Max length of big table.
|
||||
To avoid searching when `indices >= emb_max_num`, and make value = `cache_max_num`.
|
||||
- **cache_max_num** (int) - Max length of cache table.
|
||||
|
||||
Outputs:
|
||||
- **cache_idx** (Tensor) - Result of searched value, if search missed, value = -1.
|
||||
- **miss_idx** (Tensor) - The index of Tensor indices which search missed.
|
||||
If search success, miss_idx[i] = -1.
|
||||
- **miss_emb_idx** (Tensor) - The value of Tensor indices which search missed.
|
||||
If search success, miss_emb_idx[i] = -1.
|
||||
Examples:
|
||||
>>> hashmap = Parameter(Tensor(np.array([[0, 0, 0, 0],
|
||||
[10, 5, -5, 1],
|
||||
[2, 1, -5, 1],
|
||||
[15, 7, -5, 2],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[3, 3, -5, 1],
|
||||
[21, 9, -5, 1]], np.int32)), name="hashmap")
|
||||
>>> indices = Tensor(np.array([10, 2, 25, 5, 3], np.int32))
|
||||
>>> step = 0, emb_max_num = 25, cache_max_num = 10
|
||||
>>> ops = P.SearchCacheIdx()
|
||||
>>> cache_idx, miss_idx, miss_emb_idx = ops(hashmap, indices, step, emb_max_num, cache_max_num)
|
||||
cache_idx : [5, 1, 10, -1, 3]
|
||||
miss_idx : [-1, -1, -1, 3, -1]
|
||||
miss_emb_idx : [-1, -1, -1, 5, -1]
|
||||
hashmap after search : [[0, 0, 0, 0],
|
||||
[10, 5, 0, 1],
|
||||
[2, 1, 0, 1],
|
||||
[15, 7, -5, 2],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[3, 3, 0, 1],
|
||||
[21, 9, -5, 1]]
|
||||
"""
|
||||
__mindspore_signature__ = (
|
||||
sig.make_sig('hashmap', sig.sig_rw.RW_WRITE,
|
||||
dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('indices', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('step', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('emb_max_num', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('cache_max_num', dtype=sig.sig_dtype.T)
|
||||
)
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init SearchCacheIdx"""
|
||||
|
||||
self.init_prim_io_names(inputs=['hashmap', 'indices', 'step', 'emb_max_num', 'cache_max_num'],
|
||||
outputs=['cache_idx', 'miss_idx', 'miss_emb_idx'])
|
||||
|
||||
def infer_shape(self, hashmap_shape, indices_shape, step_shape, emb_max_num_shape, cache_max_num_shape):
|
||||
|
||||
if len(hashmap_shape) != 2:
|
||||
raise ValueError("The dimension of 'hashmap' in SearchCacheIdx must be 2, "
|
||||
"but got %d." % len(hashmap_shape))
|
||||
out_shape = (indices_shape, indices_shape, indices_shape)
|
||||
return out_shape
|
||||
|
||||
def infer_dtype(self, hashmap_dtype, indices_dtype, step_dtype, emb_max_num_dtype, cache_max_num_dtype):
|
||||
args = {"hashmap": hashmap_dtype, "indices": indices_dtype}
|
||||
validator.check_tensor_type_same(args, mstype.int_type, self.name)
|
||||
out_dtype = (hashmap_dtype, hashmap_dtype, hashmap_dtype)
|
||||
return out_dtype
|
||||
|
||||
|
||||
class CacheSwapHashmap(PrimitiveWithInfer):
|
||||
"""
|
||||
Delete a hashmap entry,and insert a new key to hashmap, return the key and value of delete entry.
|
||||
|
||||
Inputs:
|
||||
- **hashmap** (Parameter) - Same to operation SearchCacheIdx.
|
||||
- **miss_emb_idx** (Tensor) - The keys which are going to insert, -1 is skipped. It is the result
|
||||
- **step** (int) - The current step.
|
||||
|
||||
Outputs:
|
||||
- **swap_cache_idx** (Tensor) - Deleted value of entry, -1 is skipped.
|
||||
- **old_emb_idx** (Tensor) - Deleted key of entry, -1 is skipped.
|
||||
"""
|
||||
__mindspore_signature__ = (
|
||||
sig.make_sig('hashmap', sig.sig_rw.RW_WRITE,
|
||||
dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('miss_emb_idx', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('step', dtype=sig.sig_dtype.T)
|
||||
)
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CacheSwapHashmap"""
|
||||
|
||||
self.init_prim_io_names(inputs=['hashmap', 'miss_emb_idx', 'step'],
|
||||
outputs=['swap_cache_idx', 'old_emb_idx'])
|
||||
|
||||
def infer_shape(self, hashmap_shape, miss_emb_idx_shape, step_shape):
|
||||
|
||||
if len(hashmap_shape) != 2:
|
||||
raise ValueError("The dimension of 'hashmap' in CacheSwapHashmap must be 2, "
|
||||
"but got %d." % len(hashmap_shape))
|
||||
|
||||
out_shape = (miss_emb_idx_shape, miss_emb_idx_shape)
|
||||
return out_shape
|
||||
|
||||
def infer_dtype(self, hashmap_dtype, miss_emb_idx_dtype, step_dtype):
|
||||
args = {"miss_emb_idx": miss_emb_idx_dtype}
|
||||
validator.check_tensor_type_same(args, mstype.int_type, self.name)
|
||||
out_dtype = (miss_emb_idx_dtype, miss_emb_idx_dtype)
|
||||
return out_dtype
|
||||
|
||||
|
||||
class CacheSwapTable(PrimitiveWithInfer):
|
||||
"""
|
||||
Delete a hashmap entry,and insert a new key to hashmap, return the key and value of delete entry.
|
||||
|
||||
Inputs:
|
||||
- **cache_table** (Parameter) - The cache table which is on device.
|
||||
- **swap_cache_idx** (Tensor) - The index of table which need to swap. -1 is skipped.
|
||||
- **miss_value** (int) - The values which arg going to swap into cache table.
|
||||
|
||||
Outputs:
|
||||
- **old_value** (Tensor) - The values which are swapped out.
|
||||
"""
|
||||
__mindspore_signature__ = (
|
||||
sig.make_sig('cache_table', sig.sig_rw.RW_WRITE,
|
||||
dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('swap_cache_idx', dtype=sig.sig_dtype.T1),
|
||||
sig.make_sig('miss_value', dtype=sig.sig_dtype.T)
|
||||
)
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init CacheSwapTable"""
|
||||
|
||||
self.init_prim_io_names(inputs=['cache_table', 'swap_cache_idx', 'miss_value'],
|
||||
outputs=['old_value'])
|
||||
|
||||
def infer_shape(self, cache_table_shape, swap_cache_idx_shape, miss_value_shape):
|
||||
if len(cache_table_shape) != 2:
|
||||
raise ValueError(
|
||||
"cache table shape must be 2, but got %d" % len(cache_table_shape))
|
||||
if swap_cache_idx_shape + cache_table_shape[1:] != miss_value_shape:
|
||||
raise ValueError(
|
||||
"swap_cache_idx_shape + cache_table_shape[1:] must equal to miss_value_shape")
|
||||
return miss_value_shape
|
||||
|
||||
def infer_dtype(self, cache_table_dtype, swap_cache_idx_dtype, miss_value_dtype):
|
||||
args = {"swap_cache_idx": swap_cache_idx_dtype}
|
||||
validator.check_tensor_type_same(args, mstype.int_type, self.name)
|
||||
return miss_value_dtype
|
||||
|
||||
|
||||
class MapCacheIdx(PrimitiveWithInfer):
|
||||
"""
|
||||
MapCacheIdx merge SearchCacheIdx, CacheSwapHashmap, UpdateCache together.
|
||||
When input an indices tensor, it will output the cache indices which search in hashmap.
|
||||
"""
|
||||
__mindspore_signature__ = (
|
||||
sig.make_sig('hashmap', sig.sig_rw.RW_WRITE,
|
||||
dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('indices', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('step', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('emb_max_num', dtype=sig.sig_dtype.T),
|
||||
sig.make_sig('cache_max_num', dtype=sig.sig_dtype.T)
|
||||
)
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init MapCacheIdx"""
|
||||
|
||||
self.init_prim_io_names(inputs=['hashmap', 'indices', 'step', 'emb_max_num', 'cache_max_num'],
|
||||
outputs=['cache_idx', 'old_emb_idx', 'miss_emb_idx', 'swap_cache_idx'])
|
||||
|
||||
def infer_shape(self, hashmap_shape, indices_shape, step_shape, emb_max_num_shape, cache_max_num_shape):
|
||||
|
||||
if len(hashmap_shape) != 2:
|
||||
raise ValueError("The dimension of 'hashmap' in SearchCacheIdx must be 2, "
|
||||
"but got %d." % len(hashmap_shape))
|
||||
out_shape = (indices_shape, indices_shape,
|
||||
indices_shape, indices_shape)
|
||||
return out_shape
|
||||
|
||||
def infer_dtype(self, hashmap_dtype, indices_dtype, step_dtype, emb_max_num_dtype, cache_max_num_dtype):
|
||||
args = {"hashmap": hashmap_dtype, "indices": indices_dtype}
|
||||
validator.check_tensor_type_same(args, mstype.int_type, self.name)
|
||||
out_dtype = (hashmap_dtype, hashmap_dtype,
|
||||
hashmap_dtype, hashmap_dtype)
|
||||
return out_dtype
|
|
@ -0,0 +1,233 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import math
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import Parameter
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE,
|
||||
device_target='CPU', save_graphs=True)
|
||||
|
||||
|
||||
def hash_func(key, length):
|
||||
return (int)(((0.6180339 * key) - math.floor(0.6180339 * key)) * length)
|
||||
|
||||
|
||||
def init_hashmap(hash_map_length):
|
||||
key_np = np.array([2, 3, 10, 15, 21], np.int32)
|
||||
value_np = np.array([1, 3, 5, 7, 9], np.int32)
|
||||
NULLTAG = 0
|
||||
INIT_STEP = -5
|
||||
hashmap_np = np.zeros((hash_map_length, 4), np.int32)
|
||||
for i, key in enumerate(key_np):
|
||||
entry = hash_func(key, hash_map_length)
|
||||
count = 1
|
||||
while (hashmap_np[entry, 3] != NULLTAG and hashmap_np[entry, 0] != key):
|
||||
count += 1
|
||||
entry = (entry + 1) % hash_map_length
|
||||
if (hashmap_np[entry, 3] == NULLTAG):
|
||||
hashmap_np[entry] = [key, value_np[i], INIT_STEP, count]
|
||||
|
||||
return hashmap_np
|
||||
|
||||
|
||||
class SearchCacheIdxNet(nn.Cell):
|
||||
def __init__(self, hashmap_np):
|
||||
super().__init__()
|
||||
self.ops = P.SearchCacheIdx()
|
||||
self.hashmap = Parameter(Tensor(hashmap_np), name="hashmap")
|
||||
self.emb_max = 25
|
||||
self.cache_max = 10
|
||||
self.step = 0
|
||||
|
||||
def construct(self, indices):
|
||||
return self.ops(self.hashmap, indices, self.step, self.emb_max, self.cache_max)
|
||||
|
||||
|
||||
class CacheSwapHashmapNet(nn.Cell):
|
||||
def __init__(self, hashmap_np):
|
||||
super().__init__()
|
||||
self.net = SearchCacheIdxNet(hashmap_np)
|
||||
self.ops = P.CacheSwapHashmap()
|
||||
self.step = 0
|
||||
self.emb_max = 25
|
||||
self.cache_max = 10
|
||||
|
||||
def construct(self, indices):
|
||||
_, _, miss_emb_idx = self.net(indices)
|
||||
return self.ops(self.net.hashmap, miss_emb_idx, self.step)
|
||||
|
||||
|
||||
class MapCacheIdxNet(nn.Cell):
|
||||
def __init__(self, hashmap_np):
|
||||
super().__init__()
|
||||
self.ops = P.MapCacheIdx()
|
||||
self.hashmap = Parameter(Tensor(hashmap_np), name="hashmap")
|
||||
self.emb_max = 25
|
||||
self.cache_max = 10
|
||||
self.step = 0
|
||||
|
||||
def construct(self, indices):
|
||||
return self.ops(self.hashmap, indices, self.step, self.emb_max, self.cache_max)
|
||||
|
||||
|
||||
class UpdateCacheNet(nn.Cell):
|
||||
def __init__(self, x):
|
||||
super().__init__()
|
||||
self.ops = P.UpdateCache()
|
||||
self.max_num = 9999
|
||||
self.x = Parameter(Tensor(x), name='x')
|
||||
|
||||
def construct(self, indices, update):
|
||||
return self.ops(self.x, indices, update, self.max_num)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_search_cache_idx():
|
||||
hashmap_np = init_hashmap(10)
|
||||
indices_np = np.array([10, 2, 20, 5, 3], np.int32)
|
||||
search_cache_idx = SearchCacheIdxNet(hashmap_np)
|
||||
indices = Tensor(indices_np)
|
||||
cache_idx, miss_idx, miss_emb_idx = search_cache_idx(indices)
|
||||
|
||||
expect_cache_idx = [5, 1, -1, -1, 3]
|
||||
expect_miss_idx = [-1, -1, 2, 3, -1]
|
||||
expect_miss_emb_idx = [-1, -1, 20, 5, -1]
|
||||
|
||||
hashmap_np_after_ops = [[0, 0, 0, 0],
|
||||
[10, 5, 0, 1],
|
||||
[2, 1, 0, 1],
|
||||
[15, 7, -5, 2],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[3, 3, 0, 1],
|
||||
[21, 9, -5, 1]]
|
||||
|
||||
assert np.allclose(cache_idx.asnumpy(),
|
||||
np.array(expect_cache_idx, np.int32))
|
||||
assert np.allclose(miss_idx.asnumpy(), np.array(expect_miss_idx, np.int32))
|
||||
assert np.allclose(miss_emb_idx.asnumpy(),
|
||||
np.array(expect_miss_emb_idx, np.int32))
|
||||
assert np.allclose(search_cache_idx.hashmap.data.asnumpy(),
|
||||
np.array(hashmap_np_after_ops, np.int32))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_cache_swap_hashmap():
|
||||
hashmap_np = init_hashmap(10)
|
||||
indices_np = np.array([10, 2, 20, 5, 3], np.int32)
|
||||
net = CacheSwapHashmapNet(hashmap_np)
|
||||
indices = Tensor(indices_np)
|
||||
swap_cache_idx, old_emb_idx = net(indices)
|
||||
|
||||
expect_swap_cache_idx = [-1, -1, 9, 7, -1]
|
||||
expect_old_emb_idx = [-1, -1, 21, 15, -1]
|
||||
|
||||
hashmap_np_after_ops = [[5, 7, 0, 1],
|
||||
[10, 5, 0, 1],
|
||||
[2, 1, 0, 1],
|
||||
[20, 9, 0, 1],
|
||||
[20, 9, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[3, 3, 0, 1],
|
||||
[21, 9, -5, 0]]
|
||||
|
||||
assert np.allclose(swap_cache_idx.asnumpy(),
|
||||
np.array(expect_swap_cache_idx, np.int32))
|
||||
assert np.allclose(old_emb_idx.asnumpy(),
|
||||
np.array(expect_old_emb_idx, np.int32))
|
||||
assert np.allclose(net.net.hashmap.data.asnumpy(),
|
||||
np.array(hashmap_np_after_ops, np.int32))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_map_cache_idx():
|
||||
hashmap_np = init_hashmap(10)
|
||||
indices_np = np.array([10, 2, 20, 5, 3], np.int32)
|
||||
map_cache_idx = MapCacheIdxNet(hashmap_np)
|
||||
indices = Tensor(indices_np)
|
||||
cache_idx, old_emb_idx, miss_emb_idx, swap_cache_idx = map_cache_idx(
|
||||
indices)
|
||||
|
||||
expect_cache_idx = [5, 1, 9, 7, 3]
|
||||
expect_old_emb_idx = [-1, -1, 21, 15, -1]
|
||||
expect_miss_emb_idx = [-1, -1, 20, 5, -1]
|
||||
expect_swap_cache_idx = [-1, -1, 9, 7, -1]
|
||||
|
||||
hashmap_np_after_ops = [[5, 7, 0, 1],
|
||||
[10, 5, 0, 1],
|
||||
[2, 1, 0, 1],
|
||||
[20, 9, 0, 1],
|
||||
[20, 9, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[0, 0, 0, 0],
|
||||
[3, 3, 0, 1],
|
||||
[21, 9, -5, 0]]
|
||||
|
||||
assert np.allclose(cache_idx.asnumpy(),
|
||||
np.array(expect_cache_idx, np.int32))
|
||||
assert np.allclose(old_emb_idx.asnumpy(),
|
||||
np.array(expect_old_emb_idx, np.int32))
|
||||
assert np.allclose(miss_emb_idx.asnumpy(),
|
||||
np.array(expect_miss_emb_idx, np.int32))
|
||||
assert np.allclose(swap_cache_idx.asnumpy(),
|
||||
np.array(expect_swap_cache_idx, np.int32))
|
||||
assert np.allclose(map_cache_idx.hashmap.data.asnumpy(),
|
||||
np.array(hashmap_np_after_ops, np.int32))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_update_cache():
|
||||
x_np = np.array([[2, 3, 4, 5],
|
||||
[6, 7, 8, 9],
|
||||
[11, 12, 13, 14],
|
||||
[1, 2, 3, 4],
|
||||
[5, 6, 7, 8]], np.int32)
|
||||
|
||||
indices_np = np.array([[-1, 3, 4]], np.int32)
|
||||
update_np = np.array([[0, 0, 0, 0],
|
||||
[23, 34, 56, 78],
|
||||
[44, 55, 66, 77]], np.int32)
|
||||
|
||||
indices = Tensor(indices_np)
|
||||
update = Tensor(update_np)
|
||||
|
||||
expect = np.array([[2, 3, 4, 5],
|
||||
[6, 7, 8, 9],
|
||||
[11, 12, 13, 14],
|
||||
[23, 34, 56, 78],
|
||||
[44, 55, 66, 77]], np.int32)
|
||||
net = UpdateCacheNet(x_np)
|
||||
out = net(indices, update)
|
||||
assert np.allclose(net.x.data.asnumpy(), expect)
|
||||
assert np.allclose(out.asnumpy(), np.array([0], np.int32))
|
Loading…
Reference in New Issue