forked from mindspore-Ecosystem/mindspore
parent
2a5d90dc15
commit
a71868f1e5
|
@ -45,7 +45,6 @@ args = parser.parse_args()
|
|||
if __name__ == "__main__":
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||||
ds_eval = create_dataset(os.path.join(args.data_path, "test"), cfg.batch_size, 1)
|
||||
step_size = ds_eval.get_dataset_size()
|
||||
|
||||
# define fusion network
|
||||
network = LeNet5Fusion(cfg.num_classes)
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
import os
|
||||
import argparse
|
||||
|
||||
from src.config import quant_set, config_quant, config_noquant
|
||||
from src.config import config_quant
|
||||
from src.dataset import create_dataset
|
||||
from src.crossentropy import CrossEntropy
|
||||
from models.resnet_quant import resnet50_quant
|
||||
|
@ -34,7 +34,7 @@ parser.add_argument('--device_target', type=str, default='Ascend', help='Device
|
|||
args_opt = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
|
||||
config = config_quant if quant_set.quantization_aware else config_noquant
|
||||
config = config_quant
|
||||
|
||||
if args_opt.device_target == "Ascend":
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
|
@ -43,7 +43,6 @@ if args_opt.device_target == "Ascend":
|
|||
if __name__ == '__main__':
|
||||
# define fusion network
|
||||
net = resnet50_quant(class_num=config.class_num)
|
||||
if quant_set.quantization_aware:
|
||||
# convert fusion network to quantization aware network
|
||||
net = quant.convert_quant_network(net,
|
||||
bn_fold=True,
|
||||
|
|
|
@ -23,9 +23,9 @@ import mindspore.dataset.transforms.vision.c_transforms as C
|
|||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
import mindspore.dataset.transforms.vision.py_transforms as P
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
from src.config import quant_set, config_quant, config_noquant
|
||||
from src.config import config_quant
|
||||
|
||||
config = config_quant if quant_set.quantization_aware else config_noquant
|
||||
config = config_quant
|
||||
|
||||
|
||||
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"):
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
network config setting, will be used in test_lenet_quant.py
|
||||
"""
|
||||
|
||||
from easydict import EasyDict as edict
|
||||
|
||||
nonquant_cfg = edict({
|
||||
'num_classes': 10,
|
||||
'lr': 0.01,
|
||||
'momentum': 0.9,
|
||||
'epoch_size': 10,
|
||||
'batch_size': 32,
|
||||
'buffer_size': 1000,
|
||||
'image_height': 32,
|
||||
'image_width': 32,
|
||||
'save_checkpoint_steps': 1875,
|
||||
'keep_checkpoint_max': 10,
|
||||
})
|
||||
|
||||
quant_cfg = edict({
|
||||
'num_classes': 10,
|
||||
'lr': 0.01,
|
||||
'momentum': 0.9,
|
||||
'epoch_size': 10,
|
||||
'batch_size': 64,
|
||||
'buffer_size': 1000,
|
||||
'image_height': 32,
|
||||
'image_width': 32,
|
||||
'keep_checkpoint_max': 10,
|
||||
})
|
|
@ -0,0 +1,60 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Produce the dataset
|
||||
"""
|
||||
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.vision.c_transforms as CV
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from mindspore.dataset.transforms.vision import Inter
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
|
||||
def create_dataset(data_path, batch_size=32, repeat_size=1,
|
||||
num_parallel_workers=1):
|
||||
"""
|
||||
create dataset for train or test
|
||||
"""
|
||||
# define dataset
|
||||
mnist_ds = ds.MnistDataset(data_path)
|
||||
|
||||
resize_height, resize_width = 32, 32
|
||||
rescale = 1.0 / 255.0
|
||||
shift = 0.0
|
||||
rescale_nml = 1 / 0.3081
|
||||
shift_nml = -1 * 0.1307 / 0.3081
|
||||
|
||||
# define map operations
|
||||
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
|
||||
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
||||
rescale_op = CV.Rescale(rescale, shift)
|
||||
hwc2chw_op = CV.HWC2CHW()
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
|
||||
# apply map operations on images
|
||||
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
|
||||
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
|
||||
|
||||
# apply DatasetOps
|
||||
buffer_size = 10000
|
||||
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
|
||||
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
|
||||
mnist_ds = mnist_ds.repeat(repeat_size)
|
||||
|
||||
return mnist_ds
|
|
@ -0,0 +1,79 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""LeNet."""
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
|
||||
|
||||
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
||||
"""weight initial for conv layer"""
|
||||
weight = weight_variable()
|
||||
return nn.Conv2d(in_channels, out_channels,
|
||||
kernel_size=kernel_size, stride=stride, padding=padding,
|
||||
weight_init=weight, has_bias=False, pad_mode="valid")
|
||||
|
||||
|
||||
def fc_with_initialize(input_channels, out_channels):
|
||||
"""weight initial for fc layer"""
|
||||
weight = weight_variable()
|
||||
bias = weight_variable()
|
||||
return nn.Dense(input_channels, out_channels, weight, bias)
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""weight initial"""
|
||||
return TruncatedNormal(0.02)
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
"""
|
||||
Lenet network
|
||||
|
||||
Args:
|
||||
num_class (int): Num classes. Default: 10.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor
|
||||
Examples:
|
||||
>>> LeNet(num_class=10)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, num_class=10, channel=1):
|
||||
super(LeNet5, self).__init__()
|
||||
self.num_class = num_class
|
||||
self.conv1 = conv(channel, 6, 5)
|
||||
self.conv2 = conv(6, 16, 5)
|
||||
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
||||
self.fc2 = fc_with_initialize(120, 84)
|
||||
self.fc3 = fc_with_initialize(84, self.num_class)
|
||||
self.relu = nn.ReLU()
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
|
@ -0,0 +1,58 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""LeNet."""
|
||||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
"""
|
||||
Lenet network
|
||||
|
||||
Args:
|
||||
num_class (int): Num classes. Default: 10.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor
|
||||
Examples:
|
||||
>>> LeNet(num_class=10)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, num_class=10, channel=1):
|
||||
super(LeNet5, self).__init__()
|
||||
self.type = "fusion"
|
||||
self.num_class = num_class
|
||||
|
||||
# change `nn.Conv2d` to `nn.Conv2dBnAct`
|
||||
self.conv1 = nn.Conv2dBnAct(channel, 6, 5, pad_mode='valid', activation='relu')
|
||||
self.conv2 = nn.Conv2dBnAct(6, 16, 5, pad_mode='valid', activation='relu')
|
||||
# change `nn.Dense` to `nn.DenseBnAct`
|
||||
self.fc1 = nn.DenseBnAct(16 * 5 * 5, 120, activation='relu')
|
||||
self.fc2 = nn.DenseBnAct(120, 84, activation='relu')
|
||||
self.fc3 = nn.DenseBnAct(84, self.num_class)
|
||||
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.fc2(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
|
@ -0,0 +1,136 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
train and infer lenet quantization network
|
||||
"""
|
||||
|
||||
import os
|
||||
import pytest
|
||||
from mindspore import context
|
||||
import mindspore.nn as nn
|
||||
from mindspore.nn.metrics import Accuracy
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.train import Model
|
||||
from mindspore.train.quant import quant
|
||||
from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net
|
||||
from dataset import create_dataset
|
||||
from config import nonquant_cfg, quant_cfg
|
||||
from lenet import LeNet5
|
||||
from lenet_fusion import LeNet5 as LeNet5Fusion
|
||||
|
||||
device_target = 'GPU'
|
||||
data_path = "/home/workspace/mindspore_dataset/mnist"
|
||||
|
||||
|
||||
def train_lenet():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
|
||||
cfg = nonquant_cfg
|
||||
ds_train = create_dataset(os.path.join(data_path, "train"),
|
||||
cfg.batch_size)
|
||||
|
||||
network = LeNet5(cfg.num_classes)
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
||||
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||||
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
|
||||
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
|
||||
print("============== Starting Training Lenet==============")
|
||||
model.train(cfg['epoch_size'], ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()],
|
||||
dataset_sink_mode=True)
|
||||
|
||||
|
||||
def train_lenet_quant():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
|
||||
cfg = quant_cfg
|
||||
ckpt_path = './checkpoint_lenet-10_1875.ckpt'
|
||||
ds_train = create_dataset(os.path.join(data_path, "train"), cfg.batch_size, 1)
|
||||
step_size = ds_train.get_dataset_size()
|
||||
|
||||
# define fusion network
|
||||
network = LeNet5Fusion(cfg.num_classes)
|
||||
|
||||
# load quantization aware network checkpoint
|
||||
param_dict = load_checkpoint(ckpt_path)
|
||||
load_nonquant_param_into_quant_net(network, param_dict)
|
||||
|
||||
# convert fusion network to quantization aware network
|
||||
network = quant.convert_quant_network(network, quant_delay=900, bn_fold=False, per_channel=[True, False],
|
||||
symmetric=[False, False])
|
||||
|
||||
# define network loss
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
# define network optimization
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
|
||||
# call back and monitor
|
||||
config_ckpt = CheckpointConfig(save_checkpoint_steps=cfg.epoch_size * step_size,
|
||||
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||||
ckpt_callback = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ckpt)
|
||||
|
||||
# define model
|
||||
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
|
||||
print("============== Starting Training ==============")
|
||||
model.train(cfg['epoch_size'], ds_train, callbacks=[ckpt_callback, LossMonitor()],
|
||||
dataset_sink_mode=True)
|
||||
print("============== End Training ==============")
|
||||
|
||||
|
||||
def eval_quant():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
|
||||
cfg = quant_cfg
|
||||
ds_eval = create_dataset(os.path.join(data_path, "test"), cfg.batch_size, 1)
|
||||
ckpt_path = './checkpoint_lenet_1-10_937.ckpt'
|
||||
# define fusion network
|
||||
network = LeNet5Fusion(cfg.num_classes)
|
||||
# convert fusion network to quantization aware network
|
||||
network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000,
|
||||
per_channel=[True, False])
|
||||
|
||||
# define loss
|
||||
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
|
||||
# define network optimization
|
||||
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
|
||||
|
||||
# call back and monitor
|
||||
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
|
||||
|
||||
# load quantization aware network checkpoint
|
||||
param_dict = load_checkpoint(ckpt_path)
|
||||
not_load_param = load_param_into_net(network, param_dict)
|
||||
if not_load_param:
|
||||
raise ValueError("Load param into net fail!")
|
||||
|
||||
print("============== Starting Testing ==============")
|
||||
acc = model.eval(ds_eval, dataset_sink_mode=True)
|
||||
print("============== {} ==============".format(acc))
|
||||
assert acc['Accuracy'] > 0.98
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_lenet_quant():
|
||||
train_lenet()
|
||||
train_lenet_quant()
|
||||
eval_quant()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
train_lenet_quant()
|
Loading…
Reference in New Issue