forked from mindspore-Ecosystem/mindspore
add distribute training for gpu benchmark
This commit is contained in:
parent
51a57b9243
commit
a57fdc3b2b
|
@ -277,7 +277,7 @@ sh run_standalone_train_gpu.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATA
|
|||
sh run_eval_gpu.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
|
||||
# gpu benchmark example
|
||||
sh run_gpu_resnet_benchmark.sh [IMAGENET_DATASET_PATH] [BATCH_SIZE](optional)
|
||||
sh run_gpu_resnet_benchmark.sh [IMAGENET_DATASET_PATH] [BATCH_SIZE](optional) [DEVICE_NUM](optional)
|
||||
```
|
||||
|
||||
#### Running parameter server mode training
|
||||
|
@ -345,16 +345,11 @@ epoch: 5 step: 5004, loss is 3.3501816
|
|||
|
||||
```
|
||||
# ========START RESNET50 GPU BENCHMARK========
|
||||
step time: 22549.130 ms, fps: 11 img/sec. epoch: 1 step: 1, loss is 6.940182
|
||||
step time: 182.485 ms, fps: 1402 img/sec. epoch: 1 step: 2, loss is 7.078993
|
||||
step time: 175.263 ms, fps: 1460 img/sec. epoch: 1 step: 3, loss is 7.559594
|
||||
step time: 174.775 ms, fps: 1464 img/sec. epoch: 1 step: 4, loss is 8.020937
|
||||
step time: 175.564 ms, fps: 1458 img/sec. epoch: 1 step: 5, loss is 8.140132
|
||||
step time: 175.438 ms, fps: 1459 img/sec. epoch: 1 step: 6, loss is 8.021118
|
||||
step time: 175.760 ms, fps: 1456 img/sec. epoch: 1 step: 7, loss is 7.910158
|
||||
step time: 176.033 ms, fps: 1454 img/sec. epoch: 1 step: 8, loss is 7.940162
|
||||
step time: 175.995 ms, fps: 1454 img/sec. epoch: 1 step: 9, loss is 7.740654
|
||||
step time: 175.313 ms, fps: 1460 img/sec. epoch: 1 step: 10, loss is 7.956182
|
||||
step time: 12416.098 ms, fps: 412 img/sec. epoch: 1 step: 20, loss is 6.940182
|
||||
step time: 3472.037 ms, fps: 1474 img/sec. epoch: 2 step: 20, loss is 7.078993
|
||||
step time: 3469.523 ms, fps: 1475 img/sec. epoch: 3 step: 20, loss is 7.559594
|
||||
step time: 3460.311 ms, fps: 1479 img/sec. epoch: 4 step: 20, loss is 6.920937
|
||||
step time: 3460.543 ms, fps: 1479 img/sec. epoch: 5 step: 20, loss is 6.814013
|
||||
...
|
||||
```
|
||||
## [Evaluation Process](#contents)
|
||||
|
|
|
@ -14,45 +14,54 @@
|
|||
# ============================================================================
|
||||
"""train resnet."""
|
||||
import argparse
|
||||
import ast
|
||||
import time
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.context import ParallelMode
|
||||
from mindspore.train.callback import Callback, LossMonitor
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.communication.management import init, get_group_size
|
||||
from mindspore.common import set_seed
|
||||
import mindspore.nn as nn
|
||||
import mindspore.common.initializer as weight_init
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.vision.c_transforms as C
|
||||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
from src.resnet_gpu_benchmark import resnet50 as resnet
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--batch_size', type=str, default="256", help='Batch_size: default 256.')
|
||||
parser.add_argument('--epoch_size', type=str, default="2", help='Epoch_size: default 2')
|
||||
parser.add_argument('--print_per_steps', type=str, default="20", help='Print loss and time per steps: default 20')
|
||||
parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Imagenet dataset path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
set_seed(1)
|
||||
|
||||
class MyTimeMonitor(Callback):
|
||||
def __init__(self, batch_size):
|
||||
def __init__(self, batch_size, sink_size):
|
||||
super(MyTimeMonitor, self).__init__()
|
||||
self.batch_size = batch_size
|
||||
self.size = sink_size
|
||||
def step_begin(self, run_context):
|
||||
self.step_time = time.time()
|
||||
def step_end(self, run_context):
|
||||
step_mseconds = (time.time() - self.step_time) * 1000
|
||||
fps = self.batch_size / step_mseconds *1000
|
||||
fps = self.batch_size / step_mseconds *1000 * self.size
|
||||
print("step time: {:5.3f} ms, fps: {:d} img/sec.".format(step_mseconds, int(fps)), flush=True, end=" ")
|
||||
|
||||
def pad(image):
|
||||
zeros = np.zeros([224, 224, 1], dtype=np.uint8)
|
||||
output = np.concatenate((image, zeros), axis=2)
|
||||
return output
|
||||
|
||||
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="GPU"):
|
||||
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True)
|
||||
|
||||
image_size = 224
|
||||
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
|
||||
|
@ -73,15 +82,12 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
|
|||
C.Normalize(mean=mean, std=std),
|
||||
]
|
||||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
|
||||
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
|
||||
ds = ds.map(operations=C2.PadEnd(pad_shape=[224, 224, 4], pad_value=0), input_columns="image",
|
||||
num_parallel_workers=8)
|
||||
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=4)
|
||||
ds = ds.map(operations=pad, input_columns="image", num_parallel_workers=4)
|
||||
# apply batch operations
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
# apply dataset repeat operation
|
||||
if repeat_num > 1:
|
||||
ds = ds.repeat(repeat_num)
|
||||
|
||||
return ds
|
||||
|
@ -101,16 +107,27 @@ def get_liner_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per
|
|||
return lr_each_step
|
||||
|
||||
if __name__ == '__main__':
|
||||
# set args
|
||||
dev = "GPU"
|
||||
epoch_size = int(args_opt.epoch_size)
|
||||
total_batch = int(args_opt.batch_size)
|
||||
print_per_steps = int(args_opt.print_per_steps)
|
||||
|
||||
# init context
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=dev, save_graphs=False)
|
||||
if args_opt.run_distribute:
|
||||
init()
|
||||
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
gradients_mean=True, all_reduce_fusion_config=[85, 160])
|
||||
|
||||
# create dataset
|
||||
dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
|
||||
batch_size=total_batch, target=dev)
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
if (print_per_steps > step_size or print_per_steps < 1):
|
||||
print("Arg: print_per_steps should lessequal to dataset_size ", step_size)
|
||||
print("Change to default: 20")
|
||||
print_per_steps = 20
|
||||
# define net
|
||||
net = resnet(class_num=1001)
|
||||
|
||||
|
@ -151,10 +168,10 @@ if __name__ == '__main__':
|
|||
amp_level="O2", keep_batchnorm_fp32=False)
|
||||
|
||||
# define callbacks
|
||||
time_cb = MyTimeMonitor(total_batch)
|
||||
time_cb = MyTimeMonitor(total_batch, print_per_steps)
|
||||
loss_cb = LossMonitor()
|
||||
cb = [time_cb, loss_cb]
|
||||
|
||||
# train model
|
||||
print("========START RESNET50 GPU BENCHMARK========")
|
||||
model.train(epoch_size, dataset, callbacks=cb, sink_size=dataset.get_dataset_size())
|
||||
model.train(int(epoch_size * step_size / print_per_steps), dataset, callbacks=cb, sink_size=print_per_steps)
|
||||
|
|
|
@ -14,9 +14,10 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 1 ] && [ $# != 2 ]
|
||||
if [ $# != 1 ] && [ $# != 2 ] && [ $# != 3 ]
|
||||
then
|
||||
echo "Usage: sh run_gpu_resnet_benchmark.sh [DATASET_PATH] [BATCH_SIZE](optional)"
|
||||
echo "Usage: sh run_gpu_resnet_benchmark.sh [DATASET_PATH] [BATCH_SIZE](optional) [DEVICE_NUM](optional)"
|
||||
echo "Example: sh run_gpu_resnet_benchmark.sh /path/imagenet/train 256 8"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
@ -40,3 +41,9 @@ if [ $# == 2 ]
|
|||
then
|
||||
python ${self_path}/../gpu_resnet_benchmark.py --dataset_path=$DATAPATH --batch_size=$2
|
||||
fi
|
||||
|
||||
if [ $# == 3 ]
|
||||
then
|
||||
mpirun --allow-run-as-root -n $3 python ${self_path}/../gpu_resnet_benchmark.py --run_distribute=True \
|
||||
--dataset_path=$DATAPATH --batch_size=$2
|
||||
fi
|
||||
|
|
Loading…
Reference in New Issue