!4758 GPU kernel support NHWC

Merge pull request !4758 from VectorSL/nhwc-support
This commit is contained in:
mindspore-ci-bot 2020-08-20 19:17:33 +08:00 committed by Gitee
commit a3dae6344b
9 changed files with 482 additions and 308 deletions

View File

@ -37,6 +37,39 @@ __global__ void Pad(const size_t size, const T* input, const int num, const int
return;
}
template <typename T>
__global__ void PadNHWC(const size_t size, const T* input, const int num, const int old_height, const int old_width,
const int channels, const int padded_height, const int padded_width, const int pad_top,
const int pad_left, float pad_value, T* output) {
T pad_value_ = static_cast<T>(pad_value);
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
int block_num = pos / channels / padded_width / padded_height;
const int padded_w = pos / channels % padded_width;
const int padded_h = pos / channels / padded_width % padded_height;
if (padded_h - pad_top < 0 || padded_w - pad_left < 0 || padded_h - pad_top >= old_height ||
padded_w - pad_left >= old_width) {
output[pos] = pad_value_;
} else {
output[pos] = input[((block_num * old_height + padded_h - pad_top) * old_width + padded_w - pad_left)
*channels + pos % channels];
}
}
return;
}
template <typename T>
__global__ void PadGradNHWC(const size_t size, const T* dy, const int num, const int old_height, const int old_width,
const int channels, const int padded_height, const int padded_width, const int pad_top,
const int pad_left, T* dx) {
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
int block_num = pos / channels / old_width / old_height;
const int padded_w = pos / channels % old_width + pad_left;
const int padded_h = pos / channels / old_width % old_height + pad_top;
dx[pos] = dy[((block_num * padded_height + padded_h) * padded_width + padded_w)*channels+pos%channels];
}
return;
}
template <typename T>
__global__ void PadGrad(const size_t size, const T* dy, const int num, const int channels, const int old_height,
const int old_width, const int padded_height, const int padded_width, const int pad_top,
@ -60,6 +93,24 @@ void CalPad(const size_t size, const T* input, const int num, const int channels
return;
}
template <typename T>
void CalPadNHWC(const size_t size, const T* input, const int num, const int old_height, const int old_width,
const int channels, const int padded_height, const int padded_width, const int pad_top,
const int pad_left, const float pad_value, T* output, cudaStream_t cuda_stream) {
PadNHWC<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input, num, old_height, old_width, channels,
padded_height, padded_width, pad_top, pad_left, pad_value, output);
return;
}
template <typename T>
void CalPadGradNHWC(const size_t size, const T* dy, const int num, const int old_height, const int old_width,
const int channels, const int padded_height, const int padded_width, const int pad_top,
const int pad_left, T* dx, cudaStream_t cuda_stream) {
PadGradNHWC<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, dy, num, old_height, old_width, channels,
padded_height, padded_width, pad_top, pad_left, dx);
return;
}
template <typename T>
void CalPadGrad(const size_t size, const T* dy, const int num, const int channels, const int old_height,
const int old_width, const int padded_height, const int padded_width, const int pad_top,
@ -85,3 +136,19 @@ template void CalPadGrad<half>(const size_t size, const half* dy, const int num,
const int old_height, const int old_width, const int padded_height,
const int padded_width, const int pad_top, const int pad_left, half* dx,
cudaStream_t cuda_stream);
template void CalPadNHWC<float>(const size_t size, const float* input, const int num, const int old_height,
const int old_width, const int channels, const int padded_height,
const int padded_width, const int pad_top, const int pad_left, float pad_value,
float* output, cudaStream_t cuda_stream);
template void CalPadNHWC<half>(const size_t size, const half* input, const int num, const int old_height,
const int old_width, const int channels, const int padded_height,
const int padded_width, const int pad_top, const int pad_left, float pad_value,
half* output, cudaStream_t cuda_stream);
template void CalPadGradNHWC<float>(const size_t size, const float* dy, const int num, const int old_height,
const int old_width, const int channels, const int padded_height,
const int padded_width, const int pad_top, const int pad_left, float* dx,
cudaStream_t cuda_stream);
template void CalPadGradNHWC<half>(const size_t size, const half* dy, const int num, const int old_height,
const int old_width, const int channels, const int padded_height,
const int padded_width, const int pad_top, const int pad_left, half* dx,
cudaStream_t cuda_stream);

View File

@ -27,5 +27,13 @@ template <typename T>
void CalPadGrad(const size_t size, const T* dy, const int num, const int channels, const int old_height,
const int old_width, const int padded_height, const int padded_width, const int pad_top,
const int pad_left, T* dx, cudaStream_t cuda_stream);
template <typename T>
void CalPadNHWC(const size_t size, const T* input, const int num, const int old_height, const int old_width,
const int channels, const int padded_height, const int padded_width, const int pad_top, const int pad_left,
float pad_value, T* output, cudaStream_t cuda_stream);
template <typename T>
void CalPadGradNHWC(const size_t size, const T* input, const int num, const int old_height, const int old_width,
const int channels, const int padded_height, const int padded_width, const int pad_top,
const int pad_left, T* output, cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_PADIMPL_H_

View File

@ -21,6 +21,7 @@
#include <cudnn.h>
#include <string>
#include <vector>
#include <utility>
#include "backend/kernel_compiler/kernel.h"
#include "backend/kernel_compiler/gpu/kernel_constants.h"
#include "runtime/device/gpu/gpu_device_manager.h"
@ -73,6 +74,59 @@ class GpuKernel : public KernelMod {
dst->push_back(src.size() == 0 ? 1 : SizeToInt(src[src.size() - 1]));
}
// transpose shape: NCHW To NHWC
void ShapeNCHW2NHWC(std::vector<size_t> *shape) {
std::swap((*shape)[1], (*shape)[3]);
std::swap((*shape)[2], (*shape)[1]);
}
void SetDimA(const std::vector<size_t> &shape, int *dimA, const std::string &format) {
if (format == "NCHW" || format == "DefaultFormat") {
dimA[0] = SizeToInt(shape[0]);
dimA[1] = SizeToInt(shape[1]);
dimA[2] = SizeToInt(shape[2]);
dimA[3] = SizeToInt(shape[3]);
} else if (format == "NHWC") {
dimA[0] = SizeToInt(shape[0]);
dimA[1] = SizeToInt(shape[3]);
dimA[2] = SizeToInt(shape[1]);
dimA[3] = SizeToInt(shape[2]);
} else {
MS_LOG(ERROR) << "Unsupported data format " << format;
}
}
void SetStrideA(const std::vector<size_t> &shape, int *strideA, const std::string &format) {
if (format == "NCHW" || format == "DefaultFormat") {
strideA[0] = SizeToInt(shape[1] * shape[2] * shape[3]);
strideA[1] = SizeToInt(shape[2] * shape[3]);
strideA[2] = SizeToInt(shape[3]);
strideA[3] = 1;
} else if (format == "NHWC") {
strideA[0] = SizeToInt(shape[1] * shape[2] * shape[3]);
strideA[1] = 1;
strideA[2] = SizeToInt(shape[2] * shape[3]);
strideA[3] = SizeToInt(shape[3]);
} else {
MS_LOG(ERROR) << "Unsupported data format " << format;
}
}
void SetNCHW(const std::vector<size_t> &shape, int *n, int *c, int *h, int *w, const std::string &format) {
if (format == "NCHW" || format == "DefaultFormat") {
*n = SizeToInt(shape[0]);
*c = SizeToInt(shape[1]);
*h = SizeToInt(shape[2]);
*w = SizeToInt(shape[3]);
} else if (format == "NHWC") {
*n = SizeToInt(shape[0]);
*c = SizeToInt(shape[3]);
*h = SizeToInt(shape[1]);
*w = SizeToInt(shape[2]);
} else {
MS_LOG(ERROR) << "Unsupported data format " << format;
}
}
inline void CheckBroadcast4TensorOp(const std::vector<int> &A, const std::vector<int> &B,
const std::vector<int> &Out) {
if (A != Out && B != Out) {

View File

@ -38,6 +38,7 @@ class Conv2dGpuFwdKernel : public GpuKernel {
conv_desc_(nullptr),
padded_desc_(nullptr),
cudnn_data_type_(CUDNN_DATA_FLOAT),
compute_format_(CUDNN_TENSOR_NCHW),
old_height_(0),
old_width_(0),
pad_height_(0),
@ -76,9 +77,15 @@ class Conv2dGpuFwdKernel : public GpuKernel {
const float beta = 0;
if ((pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) && use_pad_) {
T *padded_addr = GetDeviceAddress<T>(workspace, 1);
if (data_format_ == "NHWC") {
CalPadNHWC(padded_size_ / sizeof(T), input_addr, n_, old_height_, old_width_, c_, old_height_ + pad_height_,
old_width_ + pad_width_, pad_top_, pad_left_, pad_value_, padded_addr,
reinterpret_cast<cudaStream_t>(stream_ptr));
} else {
CalPad(padded_size_ / sizeof(T), input_addr, n_, c_, old_height_, old_width_, old_height_ + pad_height_,
old_width_ + pad_width_, pad_top_, pad_left_, pad_value_, padded_addr,
reinterpret_cast<cudaStream_t>(stream_ptr));
}
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnConvolutionForward(cudnn_handle_, &alpha, padded_desc_, padded_addr, filter_desc_, filter_addr, conv_desc_,
conv_algorithm_, workspace_addr, workspace_size_, &beta, output_desc_, output_addr),
@ -97,15 +104,21 @@ class Conv2dGpuFwdKernel : public GpuKernel {
if (!CheckParam(kernel_node)) {
return false;
}
auto in_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
auto filter_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
data_format_ = AnfAlgo::GetInputFormat(kernel_node, 0);
auto in_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
auto filter_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
auto output_shape = AnfAlgo::GetOutputDeviceShape(kernel_node, 0);
is_null_input_ = CHECK_NULL_INPUT(in_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "Conv2dGpuFwdKernel input is null.";
InitSizeLists();
return true;
}
SetNCHW(in_shape, &n_, &c_, &old_height_, &old_width_, data_format_);
if (data_format_ == "NHWC") {
compute_format_ = CUDNN_TENSOR_NHWC;
}
Set4DDesc(in_shape, filter_shape, output_shape);
group_ = GetAttr<int>(kernel_node, "group");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetConvolutionGroupCount(conv_desc_, group_), "cudnnSetConvGroupCount failed");
@ -116,17 +129,55 @@ class Conv2dGpuFwdKernel : public GpuKernel {
pad_mode_ = GetAttr<std::string>(kernel_node, "pad_mode");
SetStrideAndDilation(kernel_node);
cudnnTensorDescriptor_t input_descriptor_real = nullptr;
int padA[2];
int strideA[2] = {stride_[2], stride_[3]};
int dilaA[2] = {dilation_[2], dilation_[3]};
if (pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase || !symmetry_pad) {
SetPad(in_shape, kernel_node);
pad_height_ = pad_list[0] + pad_list[1];
pad_width_ = pad_list[2] + pad_list[3];
pad_top_ = pad_list[0];
pad_left_ = pad_list[2];
// if use_pad_ == true, using zero padding in advance, else using the default cudnn pad.
if (pad_height_ % 2 == 0 && pad_width_ % 2 == 0) {
use_pad_ = false;
}
int dimA[4];
int strideApadded[4];
if (data_format_ == "NCHW" || data_format_ == "DefaultFormat") {
auto padded_shape = {IntToSize(n_), IntToSize(c_), IntToSize(old_height_ + pad_height_),
IntToSize(old_width_ + pad_width_)};
SetDimA(padded_shape, dimA, data_format_);
SetStrideA(padded_shape, strideApadded, data_format_);
} else if (data_format_ == "NHWC") {
auto padded_shape = {IntToSize(n_), IntToSize(old_height_ + pad_height_), IntToSize(old_width_ + pad_width_),
IntToSize(c_)};
SetDimA(padded_shape, dimA, data_format_);
SetStrideA(padded_shape, strideApadded, data_format_);
}
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensorNdDescriptor(padded_desc_, cudnn_data_type_, 4, dimA, strideApadded),
"cudnnSetTensor4dDescriptor failed");
if (use_pad_) {
padA[0] = 0;
padA[1] = 0;
} else {
padA[0] = pad_top_;
padA[1] = pad_left_;
}
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetConvolutionNdDescriptor(conv_desc_, 2, padA, strideA, dilaA, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolutionNdDescriptor failed");
input_descriptor_real = use_pad_ ? padded_desc_ : input_desc_;
} else {
if (pad_mode_ == kValidPadModeUpperCase || pad_mode_ == kValidPadModeLowerCase) {
pad_height_ = 0;
pad_width_ = 0;
}
padA[0] = pad_height_;
padA[1] = pad_width_;
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetConvolution2dDescriptor(conv_desc_, pad_height_, pad_width_, stride_[2], stride_[3], dilation_[2],
dilation_[3], CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
cudnnSetConvolutionNdDescriptor(conv_desc_, 2, padA, strideA, dilaA, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolution2dDescriptor failed");
input_descriptor_real = input_desc_;
}
@ -193,13 +244,11 @@ class Conv2dGpuFwdKernel : public GpuKernel {
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_desc_), "cudnnDestroyTensorDescriptor failed");
}
bool CheckParam(const CNodePtr &kernel_node) {
cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but conv2d needs 2 inputs.";
return false;
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(ERROR) << "Output number is " << output_num << ", but conv2d needs 1 output.";
@ -207,45 +256,28 @@ class Conv2dGpuFwdKernel : public GpuKernel {
}
return true;
}
void SetPad(const std::vector<size_t> &in_shape, const CNodePtr &kernel_node) {
auto pad_list = GetAttr<std::vector<int>>(kernel_node, "pad_list");
n_ = SizeToInt(in_shape[0]);
c_ = SizeToInt(in_shape[1]);
old_height_ = SizeToInt(in_shape[2]);
old_width_ = SizeToInt(in_shape[3]);
pad_height_ = pad_list[0] + pad_list[1];
pad_width_ = pad_list[2] + pad_list[3];
pad_top_ = pad_list[0];
pad_left_ = pad_list[2];
// if use_pad_ == true, using zero padding in advance, else using the default cudnn pad.
if (pad_height_ % 2 == 0 && pad_width_ % 2 == 0) {
use_pad_ = false;
}
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensor4dDescriptor(padded_desc_, CUDNN_TENSOR_NCHW, cudnn_data_type_, n_, c_,
old_height_ + pad_height_, old_width_ + pad_width_),
"cudnnSetTensor4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetConvolution2dDescriptor(
conv_desc_, use_pad_ ? 0 : pad_top_, use_pad_ ? 0 : pad_left_, stride_[2], stride_[3],
dilation_[2], dilation_[3], CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolution2dDescriptor failed");
}
void Set4DDesc(const std::vector<size_t> &in_shape, const std::vector<size_t> &filter_shape,
const std::vector<size_t> &output_shape) {
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(input_desc_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(in_shape[0]),
SizeToInt(in_shape[1]), SizeToInt(in_shape[2]), SizeToInt(in_shape[3])),
int nbDims = 4;
int dimA[4];
int strideAin[4];
int dimAout[4];
int strideAout[4];
SetDimA(in_shape, dimA, data_format_);
SetStrideA(in_shape, strideAin, data_format_);
SetDimA(output_shape, dimAout, data_format_);
SetStrideA(output_shape, strideAout, data_format_);
int filterDimA[4];
// OHWI for NHWC; OIHW for NCHW
SetDimA(filter_shape, filterDimA, data_format_);
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensorNdDescriptor(input_desc_, cudnn_data_type_, nbDims, dimA, strideAin),
"cudnnSetTensor4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetFilter4dDescriptor(filter_desc_, cudnn_data_type_, CUDNN_TENSOR_NCHW, SizeToInt(filter_shape[0]),
SizeToInt(filter_shape[1]), SizeToInt(filter_shape[2]), SizeToInt(filter_shape[3])),
cudnnSetFilterNdDescriptor(filter_desc_, cudnn_data_type_, compute_format_, nbDims, filterDimA),
"cudnnSetFilter4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(output_desc_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(output_shape[0]),
SizeToInt(output_shape[1]), SizeToInt(output_shape[2]), SizeToInt(output_shape[3])),
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensorNdDescriptor(output_desc_, cudnn_data_type_, nbDims, dimAout, strideAout),
"cudnnSetTensor4dDescriptor failed");
}
void SelectAlgorithm(cudnnTensorDescriptor_t input_descriptor_real) {
@ -292,11 +324,13 @@ class Conv2dGpuFwdKernel : public GpuKernel {
cudnnConvolutionDescriptor_t conv_desc_;
cudnnTensorDescriptor_t padded_desc_;
std::string pad_mode_;
std::string data_format_ = "NCHW";
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
const float pad_value_ = 0.0;
cudnnDataType_t cudnn_data_type_;
cudnnTensorFormat_t compute_format_;
int old_height_;
int old_width_;
int pad_height_;

View File

@ -38,6 +38,7 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
x_desc_(nullptr),
padded_descriptor_(nullptr),
cudnn_data_type_(CUDNN_DATA_FLOAT),
compute_format_(CUDNN_TENSOR_NCHW),
old_height_(0),
old_width_(0),
pad_height_(0),
@ -75,12 +76,18 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
const float alpha = 1;
const float beta = 0;
if ((pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) && use_pad_) {
T *padded = GetDeviceAddress<T>(workspace, 1);
if (data_format_ == "NHWC") {
CalPadNHWC(padded_size_ / sizeof(T), x, n_, old_height_, old_width_, c_, old_height_ + pad_height_,
old_width_ + pad_width_, pad_top_, pad_left_, pad_value_, padded,
reinterpret_cast<cudaStream_t>(stream_ptr));
} else {
CalPad(padded_size_ / sizeof(T), x, n_, c_, old_height_, old_width_, old_height_ + pad_height_,
old_width_ + pad_width_, pad_top_, pad_left_, pad_value_, padded,
reinterpret_cast<cudaStream_t>(stream_ptr));
}
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnConvolutionBackwardFilter(cudnn_handle_, &alpha, padded_descriptor_, padded, dy_desc_, dy, conv_desc_,
algo_, work_space, workspace_size_, &beta, dw_desc_, dw),
@ -99,16 +106,21 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
return false;
}
cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
auto dy_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
auto in_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
auto dy_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
auto in_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
is_null_input_ = CHECK_NULL_INPUT(dy_shape) || CHECK_NULL_INPUT(in_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "ConvGradFilterGpuBkwKernel input is null.";
InitSizeLists();
return true;
}
std::vector<int> filter_shape;
data_format_ = AnfAlgo::GetInputFormat(kernel_node, 0);
std::vector<size_t> filter_shape;
GetFilterShape(kernel_node, &filter_shape);
if (data_format_ == "NHWC") {
compute_format_ = CUDNN_TENSOR_NHWC;
}
SetNCHW(in_shape, &n_, &c_, &old_height_, &old_width_, data_format_);
Set4DDesc(dy_shape, filter_shape, in_shape);
group_ = GetAttr<int>(kernel_node, "group");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetConvolutionGroupCount(conv_desc_, group_), "cudnnSetConvGroupCount failed");
@ -120,18 +132,54 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
pad_mode_ = GetAttr<std::string>(kernel_node, "pad_mode");
SetStrideAndDilation(kernel_node);
cudnnTensorDescriptor_t x_desc_real = nullptr;
int padA[2];
int strideA[2] = {stride_[0], stride_[1]};
int dilaA[2] = {dilation_[0], dilation_[1]};
if (pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase || !symmetry_pad) {
SetPad(in_shape, kernel_node);
pad_height_ = pad_list[0] + pad_list[1];
pad_width_ = pad_list[2] + pad_list[3];
pad_top_ = pad_list[0];
pad_left_ = pad_list[2];
if (pad_height_ % 2 == 0 && pad_width_ % 2 == 0) {
use_pad_ = false;
}
int dimA[4];
int strideApadded[4];
if (data_format_ == "NCHW" || data_format_ == "DefaultFormat") {
auto padded_shape = {IntToSize(n_), IntToSize(c_), IntToSize(old_height_ + pad_height_),
IntToSize(old_width_ + pad_width_)};
SetDimA(padded_shape, dimA, data_format_);
SetStrideA(padded_shape, strideApadded, data_format_);
} else if (data_format_ == "NHWC") {
auto padded_shape = {IntToSize(n_), IntToSize(old_height_ + pad_height_), IntToSize(old_width_ + pad_width_),
IntToSize(c_)};
SetDimA(padded_shape, dimA, data_format_);
SetStrideA(padded_shape, strideApadded, data_format_);
}
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensorNdDescriptor(padded_descriptor_, cudnn_data_type_, 4, dimA, strideApadded),
"cudnnSetTensor4dDescriptor failed");
if (use_pad_) {
padA[0] = 0;
padA[1] = 0;
} else {
padA[0] = pad_top_;
padA[1] = pad_left_;
}
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetConvolutionNdDescriptor(conv_desc_, 2, padA, strideA, dilaA, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolutionNdDescriptor failed");
x_desc_real = use_pad_ ? padded_descriptor_ : x_desc_;
} else {
if (pad_mode_ == kValidPadModeUpperCase || pad_mode_ == kValidPadModeLowerCase) {
pad_height_ = 0;
pad_width_ = 0;
}
padA[0] = pad_height_;
padA[1] = pad_width_;
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetConvolution2dDescriptor(conv_desc_, pad_height_, pad_width_, stride_[0], stride_[1], dilation_[2],
dilation_[3], CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"GetConvolution2dDescriptor failed");
cudnnSetConvolutionNdDescriptor(conv_desc_, 2, padA, strideA, dilaA, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolution2dDescriptor failed");
x_desc_real = x_desc_;
}
if (cudnn_data_type_ == CUDNN_DATA_HALF) {
@ -208,27 +256,6 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
}
return true;
}
void SetPad(const std::vector<size_t> &in_shape, const CNodePtr &kernel_node) {
auto pad_list = GetAttr<std::vector<int>>(kernel_node, "pad_list");
n_ = SizeToInt(in_shape[0]);
c_ = SizeToInt(in_shape[1]);
old_height_ = SizeToInt(in_shape[2]);
old_width_ = SizeToInt(in_shape[3]);
pad_height_ = pad_list[0] + pad_list[1];
pad_width_ = pad_list[2] + pad_list[3];
pad_top_ = pad_list[0];
pad_left_ = pad_list[2];
if (pad_height_ % 2 == 0 && pad_width_ % 2 == 0) {
use_pad_ = false;
}
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensor4dDescriptor(padded_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, n_,
c_, old_height_ + pad_height_, old_width_ + pad_width_),
"cudnnSetTensor4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetConvolution2dDescriptor(
conv_desc_, use_pad_ ? 0 : pad_top_, use_pad_ ? 0 : pad_left_, stride_[0], stride_[1],
dilation_[2], dilation_[3], CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolution2dDescriptor failed");
}
void SelectAlgorithm(cudnnTensorDescriptor_t x_desc_real) {
if (group_ > 1 || CUDNN_MAJOR < 7) {
CHECK_CUDNN_RET_WITH_EXCEPT(
@ -249,27 +276,33 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
algo_ = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
}
}
void GetFilterShape(const CNodePtr &kernel_node, std::vector<int> *filter_shape) {
void GetFilterShape(const CNodePtr &kernel_node, std::vector<size_t> *filter_shape) {
auto shp_tuple_x = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("filter_sizes")->cast<ValueTuplePtr>()->value();
(void)std::transform(std::begin(shp_tuple_x), std::end(shp_tuple_x), std::back_inserter(*filter_shape),
[](const ValuePtr &e) -> int { return e->cast<Int32ImmPtr>()->value(); });
[](const ValuePtr &e) -> size_t { return e->cast<Int32ImmPtr>()->value(); });
}
void Set4DDesc(const std::vector<size_t> &dy_shape, const std::vector<int> &filter_shape,
void Set4DDesc(const std::vector<size_t> &dy_shape, const std::vector<size_t> &filter_shape,
const std::vector<size_t> &in_shape) {
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(dy_desc_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(dy_shape[0]),
SizeToInt(dy_shape[1]), SizeToInt(dy_shape[2]), SizeToInt(dy_shape[3])),
"SetTensor4dDescriptor failed");
int nbDims = 4;
int dimA[4];
int strideAin[4];
int dimAdy[4];
int strideAdy[4];
SetDimA(in_shape, dimA, data_format_);
SetStrideA(in_shape, strideAin, data_format_);
SetDimA(dy_shape, dimAdy, data_format_);
SetStrideA(dy_shape, strideAdy, data_format_);
// filter shape always keep OIHW.
int filterDimA[4] = {SizeToInt(filter_shape[0]), SizeToInt(filter_shape[1]), SizeToInt(filter_shape[2]),
SizeToInt(filter_shape[3])};
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensorNdDescriptor(dy_desc_, cudnn_data_type_, nbDims, dimAdy, strideAdy),
"cudnnSetTensorNdDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetFilter4dDescriptor(dw_desc_, cudnn_data_type_, CUDNN_TENSOR_NCHW, SizeToInt(dy_shape[1]), filter_shape[1],
filter_shape[2], filter_shape[3]),
"SetFilter4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(x_desc_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(in_shape[0]),
SizeToInt(in_shape[1]), SizeToInt(in_shape[2]), SizeToInt(in_shape[3])),
"SetTensor4dDescriptor failed");
cudnnSetFilterNdDescriptor(dw_desc_, cudnn_data_type_, compute_format_, nbDims, filterDimA),
"cudnnSetFilterNdDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensorNdDescriptor(x_desc_, cudnn_data_type_, nbDims, dimA, strideAin),
"cudnnSetTensorNdDescriptor failed");
}
void SetStrideAndDilation(const CNodePtr &kernel_node) {
stride_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, "stride");
@ -292,11 +325,13 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
cudnnTensorDescriptor_t padded_descriptor_;
cudnnConvolutionBwdFilterAlgo_t algo_;
std::string pad_mode_;
std::string data_format_ = "NCHW";
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
const float pad_value_ = 0.0;
cudnnDataType_t cudnn_data_type_;
cudnnTensorFormat_t compute_format_;
int old_height_;
int old_width_;
int pad_height_;
@ -319,4 +354,4 @@ class ConvGradFilterGpuBkwKernel : public GpuKernel {
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_CONV2D_GRAD_FILTER_GPU_KERNEL_H_
#endif // MINDePORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_CONV2D_GRAD_FILTER_GPU_KERNEL_H_

View File

@ -38,6 +38,7 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
dx_desc_(nullptr),
padded_descriptor_(nullptr),
cudnn_data_type_(CUDNN_DATA_FLOAT),
compute_format_(CUDNN_TENSOR_NCHW),
old_height_(0),
old_width_(0),
pad_height_(0),
@ -75,7 +76,6 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
const float alpha = 1;
const float beta = 0;
if ((pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) && use_pad_) {
T *padded = GetDeviceAddress<T>(workspace, 1);
@ -83,8 +83,13 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
cudnnConvolutionBackwardData(cudnn_handle_, &alpha, w_desc_, w, dy_desc_, dy, conv_desc_, algo_, work_space,
workspace_size_, &beta, padded_descriptor_, padded),
"ConvolutionBackwardData failed");
if (data_format_ == "NHWC") {
CalPadGradNHWC(output_size_ / sizeof(T), padded, n_, old_height_, old_width_, c_, old_height_ + pad_height_,
old_width_ + pad_width_, pad_top_, pad_left_, dx, reinterpret_cast<cudaStream_t>(stream_ptr));
} else {
CalPadGrad(output_size_ / sizeof(T), padded, n_, c_, old_height_, old_width_, old_height_ + pad_height_,
old_width_ + pad_width_, pad_top_, pad_left_, dx, reinterpret_cast<cudaStream_t>(stream_ptr));
}
} else {
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnConvolutionBackwardData(cudnn_handle_, &alpha, w_desc_, w, dy_desc_, dy, conv_desc_, algo_, work_space,
@ -99,16 +104,23 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
return false;
}
cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
auto dy_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
auto filter_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
data_format_ = AnfAlgo::GetInputFormat(kernel_node, 0);
auto dy_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
auto filter_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
is_null_input_ = CHECK_NULL_INPUT(dy_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "ConvGradInputGpuBkwKernel input is null.";
InitSizeLists();
return true;
}
std::vector<int> input_shape;
std::vector<size_t> input_shape;
GetInputShape(kernel_node, &input_shape);
if (data_format_ == "NHWC") {
compute_format_ = CUDNN_TENSOR_NHWC;
ShapeNCHW2NHWC(&input_shape);
}
SetNCHW(input_shape, &n_, &c_, &old_height_, &old_width_, data_format_);
Set4DDesc(dy_shape, input_shape, filter_shape);
group_ = GetAttr<int>(kernel_node, "group");
@ -121,17 +133,53 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
pad_mode_ = GetAttr<std::string>(kernel_node, "pad_mode");
SetStrideAndDilation(kernel_node);
cudnnTensorDescriptor_t dx_desc_real = nullptr;
int padA[2];
int strideA[2] = {stride_[0], stride_[1]};
int dilaA[2] = {dilation_[0], dilation_[1]};
if (pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase || !symmetry_pad) {
SetPad(input_shape, kernel_node);
pad_height_ = pad_list[0] + pad_list[1];
pad_width_ = pad_list[2] + pad_list[3];
pad_top_ = pad_list[0];
pad_left_ = pad_list[2];
if (pad_height_ % 2 == 0 && pad_width_ % 2 == 0) {
use_pad_ = false;
}
int dimA[4];
int strideApadded[4];
if (data_format_ == "NCHW" || data_format_ == "DefaultFormat") {
auto padded_shape = {IntToSize(n_), IntToSize(c_), IntToSize(old_height_ + pad_height_),
IntToSize(old_width_ + pad_width_)};
SetDimA(padded_shape, dimA, data_format_);
SetStrideA(padded_shape, strideApadded, data_format_);
} else if (data_format_ == "NHWC") {
auto padded_shape = {IntToSize(n_), IntToSize(old_height_ + pad_height_), IntToSize(old_width_ + pad_width_),
IntToSize(c_)};
SetDimA(padded_shape, dimA, data_format_);
SetStrideA(padded_shape, strideApadded, data_format_);
}
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensorNdDescriptor(padded_descriptor_, cudnn_data_type_, 4, dimA, strideApadded),
"cudnnSetTensor4dDescriptor failed");
if (use_pad_) {
padA[0] = 0;
padA[1] = 0;
} else {
padA[0] = pad_top_;
padA[1] = pad_left_;
}
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetConvolutionNdDescriptor(conv_desc_, 2, padA, strideA, dilaA, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolutionNdDescriptor failed");
dx_desc_real = use_pad_ ? padded_descriptor_ : dx_desc_;
} else {
if (pad_mode_ == kValidPadModeUpperCase || pad_mode_ == kValidPadModeLowerCase) {
pad_height_ = 0;
pad_width_ = 0;
}
padA[0] = pad_height_;
padA[1] = pad_width_;
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetConvolution2dDescriptor(conv_desc_, pad_height_, pad_width_, stride_[0], stride_[1], dilation_[2],
dilation_[3], CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
cudnnSetConvolutionNdDescriptor(conv_desc_, 2, padA, strideA, dilaA, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolution2dDescriptor failed");
dx_desc_real = dx_desc_;
}
@ -208,24 +256,6 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
}
void SetPad(const std::vector<int> &input_shape, const CNodePtr &kernel_node) {
auto pad_list = GetAttr<std::vector<int>>(kernel_node, "pad_list");
n_ = input_shape[0];
c_ = input_shape[1];
old_height_ = input_shape[2];
old_width_ = input_shape[3];
pad_height_ = pad_list[0] + pad_list[1];
pad_width_ = pad_list[2] + pad_list[3];
pad_top_ = pad_list[0];
pad_left_ = pad_list[2];
if (pad_height_ % 2 == 0 && pad_width_ % 2 == 0) {
use_pad_ = false;
}
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensor4dDescriptor(padded_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, n_,
c_, old_height_ + pad_height_, old_width_ + pad_width_),
"cudnnSetTensor4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetConvolution2dDescriptor(
conv_desc_, use_pad_ ? 0 : pad_top_, use_pad_ ? 0 : pad_left_, stride_[0], stride_[1],
dilation_[2], dilation_[3], CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT),
"cudnnSetConvolution2dDescriptor failed");
}
void SelectAlgorithm(cudnnTensorDescriptor_t dx_desc_real) {
if (group_ > 1 || CUDNN_MAJOR < 7) {
@ -247,25 +277,32 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
algo_ = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
}
}
void GetInputShape(const CNodePtr &kernel_node, std::vector<int> *input_shape) {
void GetInputShape(const CNodePtr &kernel_node, std::vector<size_t> *input_shape) {
auto shp_tuple_x = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("input_sizes")->cast<ValueTuplePtr>()->value();
(void)std::transform(std::begin(shp_tuple_x), std::end(shp_tuple_x), std::back_inserter(*input_shape),
[](const ValuePtr &e) -> int { return e->cast<Int32ImmPtr>()->value(); });
[](const ValuePtr &e) -> size_t { return e->cast<Int32ImmPtr>()->value(); });
}
void Set4DDesc(const std::vector<size_t> &dy_shape, const std::vector<int> &input_shape,
void Set4DDesc(const std::vector<size_t> &dy_shape, const std::vector<size_t> &input_shape,
const std::vector<size_t> &filter_shape) {
int nbDims = 4;
int dimA[4];
int strideAin[4];
int dimAdy[4];
int strideAdy[4];
int filterDimA[4];
SetDimA(input_shape, dimA, data_format_);
SetStrideA(input_shape, strideAin, data_format_);
SetDimA(dy_shape, dimAdy, data_format_);
SetStrideA(dy_shape, strideAdy, data_format_);
SetDimA(filter_shape, filterDimA, data_format_);
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensorNdDescriptor(dy_desc_, cudnn_data_type_, nbDims, dimAdy, strideAdy),
"cudnnSetTensorNdDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetFilter4dDescriptor(w_desc_, cudnn_data_type_, CUDNN_TENSOR_NCHW, SizeToInt(dy_shape[1]),
SizeToInt(filter_shape[1]), SizeToInt(filter_shape[2]), SizeToInt(filter_shape[3])),
"SetFilter4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(dy_desc_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(dy_shape[0]),
SizeToInt(dy_shape[1]), SizeToInt(dy_shape[2]), SizeToInt(dy_shape[3])),
"SetTensor4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(dx_desc_, CUDNN_TENSOR_NCHW, cudnn_data_type_, input_shape[0], input_shape[1],
input_shape[2], input_shape[3]),
"SetTensor4dDescriptor failed");
cudnnSetFilterNdDescriptor(w_desc_, cudnn_data_type_, compute_format_, nbDims, filterDimA),
"cudnnSetFilterNdDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensorNdDescriptor(dx_desc_, cudnn_data_type_, nbDims, dimA, strideAin),
"cudnnSetTensorNdDescriptor failed");
}
void SetStrideAndDilation(const CNodePtr &kernel_node) {
stride_ = AnfAlgo::GetNodeAttr<std::vector<int>>(kernel_node, "stride");
@ -288,10 +325,12 @@ class ConvGradInputGpuBkwKernel : public GpuKernel {
cudnnTensorDescriptor_t padded_descriptor_;
cudnnConvolutionBwdDataAlgo_t algo_;
std::string pad_mode_;
std::string data_format_ = "NCHW";
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
cudnnDataType_t cudnn_data_type_;
cudnnTensorFormat_t compute_format_;
int old_height_;
int old_width_;
int pad_height_;

View File

@ -35,9 +35,9 @@ class PoolingGpuFwdKernel : public GpuKernel {
input_descriptor_(nullptr),
output_descriptor_(nullptr),
pooling_descriptor_(nullptr),
padded_descriptor_(nullptr),
pooling_mode_(CUDNN_POOLING_MAX),
cudnn_data_type_(CUDNN_DATA_FLOAT),
compute_format_(CUDNN_TENSOR_NCHW),
old_height_(0),
old_width_(0),
pad_height_(0),
@ -50,9 +50,7 @@ class PoolingGpuFwdKernel : public GpuKernel {
is_null_input_(false),
input_size_(0),
output_size_(0),
padded_size_(0),
workspace_size_(0),
use_pad_(true) {}
workspace_size_(0) {}
~PoolingGpuFwdKernel() override { DestroyResource(); }
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
@ -67,20 +65,10 @@ class PoolingGpuFwdKernel : public GpuKernel {
T *output_addr = reinterpret_cast<T *>(outputs[0]->addr);
const float alpha = 1;
const float beta = 0;
if ((pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) && use_pad_) {
T *padded_addr = reinterpret_cast<T *>(workspace[0]->addr);
CalPad(padded_size_ / sizeof(T), input_addr, n_, c_, old_height_, old_width_, old_height_ + pad_height_,
old_width_ + pad_width_, pad_top_, pad_left_, pad_value_, padded_addr,
reinterpret_cast<cudaStream_t>(stream_ptr));
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnPoolingForward(cudnn_handle_, pooling_descriptor_, &alpha, padded_descriptor_,
padded_addr, &beta, output_descriptor_, output_addr),
"cudnnPoolingForward failed");
} else {
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnPoolingForward(cudnn_handle_, pooling_descriptor_, &alpha, input_descriptor_,
input_addr, &beta, output_descriptor_, output_addr),
"cudnnPoolingForward failed");
}
return true;
}
bool Init(const CNodePtr &kernel_node) {
@ -89,89 +77,41 @@ class PoolingGpuFwdKernel : public GpuKernel {
return false;
}
cudnn_data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
data_format_ = AnfAlgo::GetInputFormat(kernel_node, 0);
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
auto output_shape = AnfAlgo::GetOutputDeviceShape(kernel_node, 0);
is_null_input_ = CHECK_NULL_INPUT(input_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "PoolingGpuFwdKernel input is null.";
InitSizeLists();
return true;
}
SetNCHW(input_shape, &n_, &c_, &old_height_, &old_width_, data_format_);
int nbDims = 4;
int dimA[4];
int strideAin[4];
int dimAout[4];
int strideAout[4];
SetDimA(input_shape, dimA, data_format_);
SetStrideA(input_shape, strideAin, data_format_);
SetDimA(output_shape, dimAout, data_format_);
SetStrideA(output_shape, strideAout, data_format_);
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(input_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(input_shape[0]),
SizeToInt(input_shape[1]), SizeToInt(input_shape[2]), SizeToInt(input_shape[3])),
cudnnSetTensorNdDescriptor(input_descriptor_, cudnn_data_type_, nbDims, dimA, strideAin),
"cudnnSetTensor4dDescriptor failed");
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(output_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(output_shape[0]),
SizeToInt(output_shape[1]), SizeToInt(output_shape[2]), SizeToInt(output_shape[3])),
cudnnSetTensorNdDescriptor(output_descriptor_, cudnn_data_type_, nbDims, dimAout, strideAout),
"cudnnSetTensor4dDescriptor failed");
auto window = GetValue<std::vector<int>>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("ksize"));
int window_height = window[2];
int window_width = window[3];
stride_ = GetValue<std::vector<int>>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("strides"));
SetPoolingMode(kernel_node);
int windowDimA[2] = {window_height, window_width};
int paddingA[2] = {0, 0};
int strideA[2] = {stride_[2], stride_[3]};
if (pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) {
SetPad(input_shape, window_height, window_width);
} else {
pad_height_ = 0;
pad_width_ = 0;
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetPooling2dDescriptor(pooling_descriptor_, pooling_mode_, CUDNN_NOT_PROPAGATE_NAN, window_height,
window_width, pad_height_, pad_width_, stride_[2], stride_[3]),
"cudnnSetPooling2dDescriptor failed");
}
InitSizeLists();
return true;
}
protected:
void InitResource() {
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&input_descriptor_), "cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&output_descriptor_), "cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&padded_descriptor_), "cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreatePoolingDescriptor(&pooling_descriptor_),
"cudnnCreatePoolingDescriptor failed");
}
void InitSizeLists() {
if (!is_null_input_) {
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnGetTensorSizeInBytes(input_descriptor_, reinterpret_cast<size_t *>(&input_size_)),
"cudnnGetTensorSizeInBytes failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnGetTensorSizeInBytes(output_descriptor_, reinterpret_cast<size_t *>(&output_size_)),
"cudnnGetTensorSizeInBytes failed");
}
input_size_list_.push_back(input_size_);
output_size_list_.push_back(output_size_);
if ((pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) && use_pad_ && !is_null_input_) {
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnGetTensorSizeInBytes(padded_descriptor_, reinterpret_cast<size_t *>(&padded_size_)),
"cudnnGetTensorSizeInBytes failed");
workspace_size_list_.push_back(padded_size_);
if (padded_size_ == 0) {
MS_LOG(EXCEPTION) << "Padded size is 0.";
}
}
return;
}
private:
bool CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but pooling needs 1 inputs.";
return false;
}
return true;
}
void SetPad(const std::vector<size_t> &input_shape, const int &window_height, const int &window_width) {
n_ = SizeToInt(input_shape[0]);
c_ = SizeToInt(input_shape[1]);
old_height_ = SizeToInt(input_shape[2]);
old_width_ = SizeToInt(input_shape[3]);
pad_height_ =
std::max<int>(0, (((old_height_ / stride_[2]) * stride_[2] == old_height_ ? (old_height_ / stride_[2])
: (old_height_ / stride_[2]) + 1) -
@ -186,17 +126,51 @@ class PoolingGpuFwdKernel : public GpuKernel {
window_width - old_width_);
pad_top_ = pad_height_ / 2;
pad_left_ = pad_width_ / 2;
if (pad_height_ % 2 == 0 && pad_width_ % 2 == 0) {
use_pad_ = false;
paddingA[0] = pad_top_;
paddingA[1] = pad_left_;
} else {
pad_height_ = 0;
pad_width_ = 0;
}
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensor4dDescriptor(padded_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, n_,
c_, old_height_ + pad_height_, old_width_ + pad_width_),
"cudnnSetTensor4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetPooling2dDescriptor(pooling_descriptor_, pooling_mode_, CUDNN_NOT_PROPAGATE_NAN,
window_height, window_width, use_pad_ ? 0 : pad_top_,
use_pad_ ? 0 : pad_left_, stride_[2], stride_[3]),
"cudnnSetPooling2dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetPoolingNdDescriptor(pooling_descriptor_, pooling_mode_, CUDNN_NOT_PROPAGATE_NAN,
2, windowDimA, paddingA, strideA),
"cudnnSetPoolingNdDescriptor failed");
InitSizeLists();
return true;
}
protected:
void InitResource() {
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&input_descriptor_), "cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&output_descriptor_), "cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreatePoolingDescriptor(&pooling_descriptor_),
"cudnnCreatePoolingDescriptor failed");
}
void InitSizeLists() {
if (!is_null_input_) {
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnGetTensorSizeInBytes(input_descriptor_, reinterpret_cast<size_t *>(&input_size_)),
"cudnnGetTensorSizeInBytes failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnGetTensorSizeInBytes(output_descriptor_, reinterpret_cast<size_t *>(&output_size_)),
"cudnnGetTensorSizeInBytes failed");
}
input_size_list_.push_back(input_size_);
output_size_list_.push_back(output_size_);
return;
}
private:
bool CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(ERROR) << "Input number is " << input_num << ", but pooling needs 1 inputs.";
return false;
}
return true;
}
void SetPoolingMode(const CNodePtr &kernel_node) {
pad_mode_ = GetValue<std::string>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("padding"));
mode_ = AnfAlgo::GetCNodeName(kernel_node);
@ -211,7 +185,6 @@ class PoolingGpuFwdKernel : public GpuKernel {
void DestroyResource() noexcept {
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyPoolingDescriptor(pooling_descriptor_),
"cudnnDestroyPoolingDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(padded_descriptor_), "cudnnDestroyTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(output_descriptor_), "cudnnDestroyTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(input_descriptor_), "cudnnDestroyTensorDescriptor failed");
}
@ -220,16 +193,16 @@ class PoolingGpuFwdKernel : public GpuKernel {
cudnnTensorDescriptor_t input_descriptor_;
cudnnTensorDescriptor_t output_descriptor_;
cudnnPoolingDescriptor_t pooling_descriptor_;
cudnnTensorDescriptor_t padded_descriptor_;
cudnnPoolingMode_t pooling_mode_ = CUDNN_POOLING_MAX;
std::vector<int> stride_;
std::string mode_;
std::string pad_mode_;
std::string data_format_ = "NCHW";
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
cudnnDataType_t cudnn_data_type_;
cudnnTensorFormat_t compute_format_;
int old_height_;
int old_width_;
int pad_height_;
@ -242,9 +215,7 @@ class PoolingGpuFwdKernel : public GpuKernel {
bool is_null_input_;
size_t input_size_;
size_t output_size_;
size_t padded_size_;
size_t workspace_size_;
bool use_pad_;
};
} // namespace kernel
} // namespace mindspore

View File

@ -37,9 +37,9 @@ class PoolingGradGpuKernel : public GpuKernel {
dy_descriptor_(nullptr),
x_descriptor_(nullptr),
dx_descriptor_(nullptr),
padded_descriptor_(nullptr),
pooling_mode_(CUDNN_POOLING_MAX),
cudnn_data_type_(CUDNN_DATA_FLOAT),
compute_format_(CUDNN_TENSOR_NCHW),
old_height_(0),
old_width_(0),
pad_height_(0),
@ -52,9 +52,7 @@ class PoolingGradGpuKernel : public GpuKernel {
is_null_input_(false),
input_size_(0),
output_size_(0),
padded_size_(0),
workspace_size_(0),
use_pad_(true) {}
workspace_size_(0) {}
~PoolingGradGpuKernel() override { DestroyResource(); }
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
@ -72,27 +70,10 @@ class PoolingGradGpuKernel : public GpuKernel {
const float alpha = 1;
const float beta = 0;
if ((pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) && use_pad_) {
T *padded = GetDeviceAddress<T>(workspace, 0);
T *padded_dx = GetDeviceAddress<T>(workspace, 1);
CalPad(padded_size_ / sizeof(T), x_data, n_, c_, old_height_, old_width_, old_height_ + pad_height_,
old_width_ + pad_width_, pad_top_, pad_left_, pad_value_, padded,
reinterpret_cast<cudaStream_t>(stream_ptr));
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnPoolingBackward(cudnn_handle_, pooling_descriptor_, &alpha, y_descriptor_, y, dy_descriptor_, dy,
padded_descriptor_, padded, &beta, padded_descriptor_, padded_dx),
"cudnnPoolingBackward failed");
CalPadGrad(output_size_ / sizeof(T), padded_dx, n_, c_, old_height_, old_width_, old_height_ + pad_height_,
old_width_ + pad_width_, pad_top_, pad_left_, dx, reinterpret_cast<cudaStream_t>(stream_ptr));
} else {
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnPoolingBackward(cudnn_handle_, pooling_descriptor_, &alpha, y_descriptor_, y, dy_descriptor_, dy,
x_descriptor_, x_data, &beta, dx_descriptor_, dx),
"cudnnPoolingBackward failed");
}
return true;
}
bool Init(const CNodePtr &kernel_node) override {
@ -104,46 +85,73 @@ class PoolingGradGpuKernel : public GpuKernel {
int window_height = window[2];
int window_width = window[3];
SetPoolingMode(kernel_node);
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
auto input_mask = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
auto input_mask = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
auto dout_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 2);
auto output_shape = AnfAlgo::GetOutputDeviceShape(kernel_node, 0);
data_format_ = AnfAlgo::GetInputFormat(kernel_node, 0);
is_null_input_ = CHECK_NULL_INPUT(input_shape) || CHECK_NULL_INPUT(input_mask);
if (is_null_input_) {
MS_LOG(WARNING) << "PoolingGradGpuKernel input is null.";
InitSizeLists();
return true;
}
SetNCHW(input_shape, &n_, &c_, &old_height_, &old_width_, data_format_);
int windowDimA[2] = {window_height, window_width};
int paddingA[2] = {0, 0};
int strideA[2] = {stride_[2], stride_[3]};
int nbDims = 4;
int dimA[4];
int strideAin[4];
int dimAy[4];
int strideAiny[4];
int dimAdy[4];
int strideAdy[4];
int dimAout[4];
int strideAout[4];
SetDimA(input_shape, dimA, data_format_);
SetStrideA(input_shape, strideAin, data_format_);
SetDimA(input_mask, dimAy, data_format_);
SetStrideA(input_mask, strideAiny, data_format_);
SetDimA(dout_shape, dimAdy, data_format_);
SetStrideA(dout_shape, strideAdy, data_format_);
SetDimA(output_shape, dimAout, data_format_);
SetStrideA(output_shape, strideAout, data_format_);
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensorNdDescriptor(y_descriptor_, cudnn_data_type_, nbDims, dimAy, strideAiny),
"cudnnSetTensor4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensorNdDescriptor(dy_descriptor_, cudnn_data_type_, nbDims, dimAdy, strideAdy),
"cudnnSetTensor4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(y_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(input_mask[0]),
SizeToInt(input_mask[1]), SizeToInt(input_mask[2]), SizeToInt(input_mask[3])),
"cudnnSetTensor4dDescriptor");
auto dout_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2);
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(dy_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(dout_shape[0]),
SizeToInt(dout_shape[1]), SizeToInt(dout_shape[2]), SizeToInt(dout_shape[3])),
"cudnnSetTensor4dDescriptor");
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(dx_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(output_shape[0]),
SizeToInt(output_shape[1]), SizeToInt(output_shape[2]), SizeToInt(output_shape[3])),
cudnnSetTensorNdDescriptor(dx_descriptor_, cudnn_data_type_, nbDims, dimAout, strideAout),
"cudnnSetTensor4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensorNdDescriptor(x_descriptor_, cudnn_data_type_, nbDims, dimA, strideAin),
"cudnnSetTensor4dDescriptor failed");
if (kSamePadModeUpperCase == pad_mode_ || kSamePadModeLowerCase == pad_mode_) {
SetPad(input_shape, window_height, window_width);
pad_height_ =
std::max<int>(0, (((old_height_ / stride_[2]) * stride_[2] == old_height_ ? (old_height_ / stride_[2])
: (old_height_ / stride_[2]) + 1) -
1) *
stride_[2] +
window_height - old_height_);
pad_width_ =
std::max<int>(0, (((old_width_ / stride_[3]) * stride_[3] == old_width_ ? (old_width_ / stride_[3])
: (old_width_ / stride_[3]) + 1) -
1) *
stride_[3] +
window_width - old_width_);
pad_top_ = pad_height_ / 2;
pad_left_ = pad_width_ / 2;
paddingA[0] = pad_top_;
paddingA[1] = pad_left_;
} else {
if (pad_mode_ == kValidPadModeUpperCase || pad_mode_ == kValidPadModeLowerCase) {
pad_height_ = 0;
pad_width_ = 0;
}
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetPooling2dDescriptor(pooling_descriptor_, pooling_mode_, CUDNN_NOT_PROPAGATE_NAN, window_height,
window_width, pad_height_, pad_width_, stride_[2], stride_[3]),
"cudnnSetPooling2dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(x_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(input_shape[0]),
SizeToInt(input_shape[1]), SizeToInt(input_shape[2]), SizeToInt(input_shape[3])),
"cudnnSetTensor4dDescriptor");
}
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetPoolingNdDescriptor(pooling_descriptor_, pooling_mode_, CUDNN_NOT_PROPAGATE_NAN,
2, windowDimA, paddingA, strideA),
"cudnnSetPoolingNdDescriptor failed");
InitSizeLists();
return true;
}
@ -155,7 +163,6 @@ class PoolingGradGpuKernel : public GpuKernel {
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&dy_descriptor_), "cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&x_descriptor_), "cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&dx_descriptor_), "cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreateTensorDescriptor(&padded_descriptor_), "cudnnCreateTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnCreatePoolingDescriptor(&pooling_descriptor_),
"cudnnCreatePoolingDescriptor failed");
}
@ -179,16 +186,6 @@ class PoolingGradGpuKernel : public GpuKernel {
"cudnnGetTensorSizeInBytes failed");
}
input_size_list_.push_back(input_size_);
if ((pad_mode_ == kSamePadModeUpperCase || pad_mode_ == kSamePadModeLowerCase) && use_pad_ && !is_null_input_) {
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnGetTensorSizeInBytes(padded_descriptor_, &padded_size_),
"cudnnGetTensorSizeInBytes failed");
if (padded_size_ == 0) {
MS_LOG(EXCEPTION) << "Padded size is 0.";
}
workspace_size_list_.push_back(padded_size_);
workspace_size_list_.push_back(padded_size_);
}
return;
}
@ -206,35 +203,6 @@ class PoolingGradGpuKernel : public GpuKernel {
c_ = SizeToInt(input_shape[1]);
old_height_ = SizeToInt(input_shape[2]);
old_width_ = SizeToInt(input_shape[3]);
pad_height_ =
std::max<int>(0, (((old_height_ / stride_[2]) * stride_[2] == old_height_ ? (old_height_ / stride_[2])
: (old_height_ / stride_[2]) + 1) -
1) *
stride_[2] +
window_height - old_height_);
pad_width_ =
std::max<int>(0, (((old_width_ / stride_[3]) * stride_[3] == old_width_ ? (old_width_ / stride_[3])
: (old_width_ / stride_[3]) + 1) -
1) *
stride_[3] +
window_width - old_width_);
pad_top_ = pad_height_ / 2;
pad_left_ = pad_width_ / 2;
if (pad_height_ % 2 == 0 && pad_width_ % 2 == 0) {
use_pad_ = false;
}
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetTensor4dDescriptor(padded_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, n_,
c_, old_height_ + pad_height_, old_width_ + pad_width_),
"cudnnSetTensor4dDescriptor failed");
CHECK_CUDNN_RET_WITH_EXCEPT(
cudnnSetTensor4dDescriptor(x_descriptor_, CUDNN_TENSOR_NCHW, cudnn_data_type_, SizeToInt(input_shape[0]),
SizeToInt(input_shape[1]), SizeToInt(input_shape[2]) + (use_pad_ ? pad_height_ : 0),
SizeToInt(input_shape[3]) + (use_pad_ ? pad_width_ : 0)),
"cudnnSetTensor4dDescriptor");
CHECK_CUDNN_RET_WITH_EXCEPT(cudnnSetPooling2dDescriptor(pooling_descriptor_, pooling_mode_, CUDNN_NOT_PROPAGATE_NAN,
window_height, window_width, use_pad_ ? 0 : pad_top_,
use_pad_ ? 0 : pad_left_, stride_[2], stride_[3]),
"cudnnSetPooling2dDescriptor failed");
}
void SetPoolingMode(const CNodePtr &kernel_node) {
pad_mode_ = GetAttr<std::string>(kernel_node, "padding");
@ -252,7 +220,6 @@ class PoolingGradGpuKernel : public GpuKernel {
void DestroyResource() noexcept {
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyPoolingDescriptor(pooling_descriptor_),
"cudnnDestroyPoolingDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(padded_descriptor_), "cudnnDestroyTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dx_descriptor_), "cudnnDestroyTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(x_descriptor_), "cudnnDestroyTensorDescriptor failed");
CHECK_CUDNN_RET_WITH_ERROR(cudnnDestroyTensorDescriptor(dy_descriptor_), "cudnnDestroyTensorDescriptor failed");
@ -265,7 +232,6 @@ class PoolingGradGpuKernel : public GpuKernel {
cudnnTensorDescriptor_t dy_descriptor_;
cudnnTensorDescriptor_t x_descriptor_;
cudnnTensorDescriptor_t dx_descriptor_;
cudnnTensorDescriptor_t padded_descriptor_;
cudnnPoolingMode_t pooling_mode_ = CUDNN_POOLING_MAX;
std::vector<int> stride_;
std::vector<size_t> input_size_list_;
@ -273,7 +239,9 @@ class PoolingGradGpuKernel : public GpuKernel {
std::vector<size_t> workspace_size_list_;
std::string mode_;
std::string pad_mode_;
std::string data_format_ = "NCHW";
cudnnDataType_t cudnn_data_type_;
cudnnTensorFormat_t compute_format_;
int old_height_;
int old_width_;
int pad_height_;
@ -286,9 +254,7 @@ class PoolingGradGpuKernel : public GpuKernel {
bool is_null_input_;
size_t input_size_;
size_t output_size_;
size_t padded_size_;
size_t workspace_size_;
bool use_pad_;
};
} // namespace kernel
} // namespace mindspore

View File

@ -45,23 +45,23 @@ def test_maxpool2d_grad():
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]
]]]).astype(np.float32))
a = Tensor(np.array([[[
d = Tensor(np.array([[[
[3, 3, 3],
[3, 3, 3],
[3, 3, 3]
]]]).astype(np.float32))
d = Tensor(np.array([[[
a = Tensor(np.array([[[
[7, 9, 11],
[19, 21, 23],
[31, 33, 35]
]]]).astype(np.float32))
expect_result = (np.array([[[
[0, 0, 0, 0, 0, 0],
[0, 7, 0, 9, 0, 11],
[0, 3, 0, 3, 0, 3],
[0, 0, 0, 0, 0, 0],
[0, 19, 0, 21, 0, 23],
[0, 3, 0, 3, 0, 3],
[0, 0, 0, 0, 0, 0],
[0, 31, 0, 33, 0, 35]
[0, 3, 0, 3, 0, 3]
]]]))
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")