!7611 [MS][GPU] Adding new Ops - TensorDot and TensorDot Grad

Merge pull request !7611 from danishnxt/newMaster
This commit is contained in:
mindspore-ci-bot 2020-10-26 21:00:11 +08:00 committed by Gitee
commit a3af89bd48
6 changed files with 744 additions and 1 deletions

View File

@ -0,0 +1,30 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/math/tensordot_gpu_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(
TensorDot,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
TensorDotGpuKernel, float)
MS_REG_GPU_KERNEL_ONE(
TensorDot,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
TensorDotGpuKernel, half)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,212 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_TENSORDOT_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_TENSORDOT_H_
#include <cublas_v2.h>
#include <cuda_runtime_api.h>
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/kernel_constants.h"
#include "backend/kernel_compiler/gpu/cuda_impl/transpose_impl.cuh"
#include "utils/convert_utils.h"
namespace mindspore {
namespace kernel {
template <typename T>
class TensorDotGpuKernel : public GpuKernel {
public:
TensorDotGpuKernel()
: batch_(0),
m_(0),
n_(0),
k_(0),
is_null_input_(false),
handle_(nullptr),
dtype_a_(CUDA_R_32F),
dtype_b_(CUDA_R_32F),
dtype_c_(CUDA_R_32F),
algo_(CUBLAS_GEMM_DEFAULT) {}
~TensorDotGpuKernel() = default;
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
if (is_null_input_) {
return true;
}
T *x1_input = GetDeviceAddress<T>(inputs, 0);
T *x2_input = GetDeviceAddress<T>(inputs, 1);
size_t *x1_input_shape = GetDeviceAddress<size_t>(workspace, 0);
size_t *x2_input_shape = GetDeviceAddress<size_t>(workspace, 1);
size_t *x1_input_trans_axes = GetDeviceAddress<size_t>(workspace, 2);
size_t *x2_input_trans_axes = GetDeviceAddress<size_t>(workspace, 3);
// transposed interim values moved to workspace, then multiplied
T *x1_reshape = GetDeviceAddress<T>(workspace, 4);
T *x2_reshape = GetDeviceAddress<T>(workspace, 5);
T *output_addr = GetDeviceAddress<T>(outputs, 0);
// Transpose X1
CHECK_CUDA_RET_WITH_EXCEPT(
cudaMemcpyAsync(x1_input_shape, &x1_input_shape_[0], x1_input_shape_.size() * sizeof(size_t),
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync x1_input_shape failed");
CHECK_CUDA_RET_WITH_EXCEPT(
cudaMemcpyAsync(x1_input_trans_axes, &x1_transpose_fwd_[0], x1_input_shape_.size() * sizeof(size_t),
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync input_axis_x1 failed");
int size_x1 = SizeToInt(input_size_x1_ / sizeof(T));
CalTranspose(size_x1, x1_input, x1_input_shape, x1_input_trans_axes, SizeToInt(x1_input_shape_.size()), x1_reshape,
reinterpret_cast<cudaStream_t>(stream_ptr));
// Transpose X2
CHECK_CUDA_RET_WITH_EXCEPT(
cudaMemcpyAsync(x2_input_shape, &x2_input_shape_[0], (x2_input_shape_.size() * sizeof(size_t)),
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync x2_input_shape failed");
CHECK_CUDA_RET_WITH_EXCEPT(
cudaMemcpyAsync(x2_input_trans_axes, &x2_transpose_fwd_[0], (x2_input_shape_.size() * sizeof(size_t)),
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
"cudaMemcpyAsync input_axis_x2 failed");
int size_x2 = SizeToInt(input_size_x2_ / sizeof(T));
CalTranspose(size_x2, x2_input, x2_input_shape, x2_input_trans_axes, SizeToInt(x2_input_shape_.size()), x2_reshape,
reinterpret_cast<cudaStream_t>(stream_ptr));
// Matrix Mulitply interim transposed values with GEMM
const float alpha = 1; // constants for cublas API
const float beta = 0;
const int lda = SizeToInt(k_);
const int ldb = SizeToInt(n_);
const int ldc = n_;
auto stride_a = SizeToInt(m_ * k_);
auto stride_b = SizeToInt(k_ * n_);
auto stride_c = SizeToInt(m_ * n_);
try {
CHECK_CUBLAS_RET_WITH_EXCEPT(
cublasGemmStridedBatchedEx(handle_, CUBLAS_OP_N, CUBLAS_OP_N, SizeToInt(n_), SizeToInt(m_), SizeToInt(k_),
&alpha, x2_reshape, dtype_b_, ldb, stride_b, x1_reshape, dtype_a_, lda, stride_a,
&beta, output_addr, dtype_c_, ldc, stride_c, batch_, CUDA_R_32F, algo_),
"cublasSgemm Call Fail");
} catch (const std::exception &e) {
MS_LOG(EXCEPTION) << "Encountered an exception: " << e.what() << " when invoke cublas cublasGemmStridedBatchedEx";
}
return true;
}
bool Init(const CNodePtr &kernel_node) override {
handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCublasHandle();
// checking for FP16 op, switch to Tensor Core if available
dtype_a_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
dtype_b_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 1)));
dtype_c_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetOutputDeviceDataType(kernel_node, 0)));
if (dtype_a_ == CUDA_R_16F && dtype_b_ == CUDA_R_16F && dtype_c_ == CUDA_R_16F) {
MS_LOG(INFO) << "Input and output type is float16, allow to use Tensor Core operations if possible";
algo_ = CUBLAS_GEMM_DEFAULT_TENSOR_OP;
}
auto tmp_x1_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
auto tmp_x2_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
input_size_x1_ = sizeof(T);
for (size_t i = 0; i < tmp_x1_shape.size(); i++) {
x1_input_shape_.push_back(tmp_x1_shape[i]);
input_size_x1_ *= tmp_x1_shape[i];
}
input_size_x2_ = sizeof(T);
for (size_t i = 0; i < tmp_x2_shape.size(); i++) {
x2_input_shape_.push_back(tmp_x2_shape[i]);
input_size_x2_ *= tmp_x2_shape[i];
}
// holding in temp values to convert to size_t vectors
auto x1_transpose_fwd_temp = GetAttr<std::vector<int>>(kernel_node, "x1_transpose_fwd");
auto x2_transpose_fwd_temp = GetAttr<std::vector<int>>(kernel_node, "x2_transpose_fwd");
for (size_t i = 0; i < x1_transpose_fwd_temp.size(); i++) {
x1_transpose_fwd_.push_back(x1_transpose_fwd_temp[i]);
}
for (size_t i = 0; i < x2_transpose_fwd_temp.size(); i++) {
x2_transpose_fwd_.push_back(x2_transpose_fwd_temp[i]);
}
// values to decide multiplication call specifics
x1_reshape_fwd_ = GetAttr<std::vector<int>>(kernel_node, "x1_reshape_fwd");
x2_reshape_fwd_ = GetAttr<std::vector<int>>(kernel_node, "x2_reshape_fwd");
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
output_size_ = sizeof(T);
for (size_t i = 0; i < output_shape.size(); i++) {
output_size_ *= output_shape[i];
}
is_null_input_ = CHECK_NULL_INPUT(output_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "input is null";
InitSizeLists();
return true;
}
m_ = x1_reshape_fwd_[0];
k_ = x1_reshape_fwd_[1];
n_ = x2_reshape_fwd_[1];
batch_ = 1; // kept as a single multiplication operation
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
size_t size_t_size = sizeof(size_t);
input_size_list_.push_back(input_size_x1_);
input_size_list_.push_back(input_size_x2_);
workspace_size_list_.push_back(x1_input_shape_.size() * size_t_size);
workspace_size_list_.push_back(x2_input_shape_.size() * size_t_size);
workspace_size_list_.push_back(x1_transpose_fwd_.size() * size_t_size);
workspace_size_list_.push_back(x2_transpose_fwd_.size() * size_t_size);
workspace_size_list_.push_back(input_size_x1_);
workspace_size_list_.push_back(input_size_x2_);
output_size_list_.push_back(output_size_);
}
private:
size_t batch_;
size_t m_;
size_t n_;
size_t k_;
bool is_null_input_;
std::vector<size_t> x1_input_shape_;
std::vector<size_t> x2_input_shape_;
size_t input_size_x1_;
size_t input_size_x2_;
size_t output_size_;
std::vector<size_t> x1_transpose_fwd_; // For transpose
std::vector<size_t> x2_transpose_fwd_;
std::vector<int> x1_reshape_fwd_; // For mulitplication shape
std::vector<int> x2_reshape_fwd_;
cublasHandle_t handle_;
cudaDataType_t dtype_a_;
cudaDataType_t dtype_b_;
cudaDataType_t dtype_c_;
cublasGemmAlgo_t algo_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
};
} // namespace kernel
} // namespace mindspore
#endif

View File

@ -156,6 +156,48 @@ def bprop_batchmatmul(self):
return bprop return bprop
@bprop_getters.register(P.TensorDot)
def bprop_tensordot(self):
"""Grad definition for `TensorDot` operation."""
mul_op_x1 = P.MatMul(transpose_a=False, transpose_b=True)
mul_op_x2 = P.MatMul(transpose_a=True, transpose_b=False)
invert_permutation_op = P.InvertPermutation()
transpose_op = P.Transpose()
reshape_op = P.Reshape()
# pull transformation specifics from P.TensorDot class
x1_transpose_fwd = tuple(self.x1_transpose_fwd)
x2_transpose_fwd = tuple(self.x2_transpose_fwd)
x1_reshape_fwd = tuple(self.x1_reshape_fwd)
x2_reshape_fwd = tuple(self.x2_reshape_fwd)
dout_reshape = (self.x1_reshape_fwd[0], self.x2_reshape_fwd[1])
# precalculated in fwd pass due to easier computation
x1_reshape_back = tuple(self.x1_reshape_back)
x2_reshape_back = tuple(self.x2_reshape_back)
def bprop(x1, x2, out, dout):
# reshape dy values to 2D for MatMul
dout_reshaped = reshape_op(dout, dout_reshape)
# transform inputs to forward pass equivalents
x1_transpose = transpose_op(x1, x1_transpose_fwd)
x2_transpose = transpose_op(x2, x2_transpose_fwd)
x1_reshape = reshape_op(x1_transpose, x1_reshape_fwd)
x2_reshape = reshape_op(x2_transpose, x2_reshape_fwd)
# calculate dx values for x1 and x2
dx1_interim = mul_op_x1(dout_reshaped, x2_reshape)
dx2_interim = mul_op_x2(x1_reshape, dout_reshaped)
# reverse transformations on dx values for both inputs
dx1_reshape = reshape_op(dx1_interim, x1_reshape_back)
dx2_reshape = reshape_op(dx2_interim, x2_reshape_back)
dx1_retranspose_axes = invert_permutation_op(x1_transpose_fwd)
dx2_retranspose_axes = invert_permutation_op(x2_transpose_fwd)
dx1_transpose = transpose_op(dx1_reshape, dx1_retranspose_axes)
dx2_transpose = transpose_op(dx2_reshape, dx2_retranspose_axes)
return dx1_transpose, dx2_transpose
return bprop
@bprop_getters.register(P.TensorAdd) @bprop_getters.register(P.TensorAdd)
def get_bprop_tensor_add(self): def get_bprop_tensor_add(self):
"""Grad definition for `TensorAdd` operation.""" """Grad definition for `TensorAdd` operation."""

View File

@ -54,7 +54,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus, NPUGetFloatStatus, Pow, RealDiv, IsNan, IsInf, IsFinite, FloatStatus,
Reciprocal, CumSum, HistogramFixedWidth, SquaredDifference, Xdivy, Xlogy, Reciprocal, CumSum, HistogramFixedWidth, SquaredDifference, Xdivy, Xlogy,
Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod, IFMR, Sin, Sqrt, Rsqrt, BesselI0e, BesselI1e, TruncateDiv, TruncateMod, IFMR,
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan) Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps, Tan, TensorDot)
from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, UniformInt, UniformReal, from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, UniformInt, UniformReal,
RandomCategorical, StandardLaplace, Multinomial) RandomCategorical, StandardLaplace, Multinomial)

View File

@ -744,6 +744,126 @@ class BatchMatMul(MatMul):
'greater or equal to 3,' + f' while x size = {len(x)}, y size= {len(y)}') 'greater or equal to 3,' + f' while x size = {len(x)}, y size= {len(y)}')
class TensorDot(PrimitiveWithInfer):
"""
Computation of Tensor contraction on arbitrary axes between tensors `a` and `b`.
Contraction allows for the summation of products of elements of `a` and `b` on specified axes.
The same number of axes must be specified for both x1 and x2, and values must be within range
of number of dims of both `a` and `b`.
Selected dims in both inputs must also match.
axes = 0 leads to outer product, and axes = 1 leads to normal matrix multiplication.
axes = 1 is the same as axes = ((0,),(1,) where length of input shape is 2 for both `a` and `b`
axes = 2 is the same as axes = ((0,1),(1,2)) where length of input shape is 3 for both `a` and `b`
Args:
**axes** (Union[int, tuple(int), tuple(tuple(int)), list(list(int))]): Single value or
tuple/list of length 2 with dimensions specified for `a` and `b` each. If single value `N` passed,
automatically picks up first N dims from `a` input shape and last N dims from `b` input shape.
Inputs:
- **x1** (Tensor): First tensor in TensorDot op with datatype float16 or float32
- **x2** (Tensor): Second tensor in TensorDot op with datatype float16 or float32
Outputs:
Tensor, the shape of the output tensor is :math:`(N + M)`. Where :math:`N` and :math:`M` are the free axes not
contracted in both inputs
Examples:
>>> input_x1 = Tensor(np.ones(shape=[1, 2, 3]), mindspore.float32)
>>> input_x2 = Tensor(np.ones(shape=[3, 1, 2]), mindspore.float32)
>>> tensordot = P.TensorDot(((0,1),(1,2)))
>>> output = tensordot(input_x1, input_x2)
"""
@prim_attr_register
def __init__(self, axes):
self.axes = axes
validator.check_value_type('axes', axes, [int, tuple, list], self.name)
if not isinstance(self.axes, int):
self.axes = list(self.axes) # to avoid immutability issues
if len(self.axes) != 2:
raise ValueError("Require two axes inputs, given less")
self.int_to_tuple_conv() # convert before length checks
if len(self.axes[0]) != len(self.axes[1]):
raise ValueError("Axes have to be the same size/length")
if len(self.axes[0]) != len(set(self.axes[0])) or len(self.axes[1]) != len(set(self.axes[1])):
raise ValueError("Axes cannot have duplicating values")
def int_to_tuple_conv(self):
"""
Converts ints to tuples in input axes, expected by most validation checks.
"""
for x in [0, 1]:
if isinstance(self.axes[x], int):
self.axes[x] = (self.axes[x],)
def check_input_axes(self, x1_shape, x2_shape):
"""
Convert from single int axes to 2d tuple if required and check for validity with inputs.
"""
if isinstance(self.axes, int):
if self.axes <= 0:
# outer product, no input validation required
self.axes = ([], []) # no axes selected for either
return
if self.axes > len(x1_shape) or self.axes > len(x2_shape):
raise ValueError(
"Axes value too high for given input arrays dimensions.")
x1_ind = tuple(range(len(x1_shape))[-1 * self.axes:])
x2_ind = tuple(range(len(x2_shape))[:self.axes])
self.axes = tuple((x1_ind, x2_ind))
self.int_to_tuple_conv()
for i in range(len(self.axes[0])): # sizes already validated
if x1_shape[self.axes[0][i]] != x2_shape[self.axes[1][i]]:
raise ValueError(
"Given Axes are incompatible with given input arrays")
def calc_new_shape(self, shape, position=0):
"""
Calculate transpose and reshape parameters for input transformations,
'position' refers to whether tensor is first or second in the op.
"""
contraction_axes = [i if i >= 0 else i + len(shape) for i in self.axes[position]]
prod_contraction = int(np.prod([shape[i] for i in contraction_axes]))
free_axes = [i for i in range(len(shape)) if i not in contraction_axes]
free_dims = [shape[i] for i in free_axes]
prod_free = int(np.prod(free_dims))
transpose_perm = list(contraction_axes) + free_axes if position else free_axes + list(contraction_axes)
new_shape = [prod_contraction, prod_free] if position else [prod_free, prod_contraction]
return new_shape, transpose_perm, free_dims
def generate_transform_dims(self, x1_shape, x2_shape):
"""
Initiate calls for input transform calculations and calculate paramters for output
and for backprop tranformations.
"""
self.x1_reshape_fwd, self.x1_transpose_fwd, x1_ret = self.calc_new_shape(x1_shape, 0)
self.x2_reshape_fwd, self.x2_transpose_fwd, x2_ret = self.calc_new_shape(x2_shape, 1)
self.output_shape = x1_ret + x2_ret # combine free axes from both inputs
self.x1_reshape_back = [x1_shape[x] for x in self.x1_transpose_fwd]
self.x2_reshape_back = [x2_shape[x] for x in self.x2_transpose_fwd]
def infer_shape(self, x1, x2):
self.check_input_axes(x1, x2)
self.generate_transform_dims(x1, x2)
# processed parameters for reading directly into kernel
self.add_prim_attr('x1_transpose_fwd', self.x1_transpose_fwd)
self.add_prim_attr('x2_transpose_fwd', self.x2_transpose_fwd)
self.add_prim_attr('x1_reshape_fwd', self.x1_reshape_fwd)
self.add_prim_attr('x2_reshape_fwd', self.x2_reshape_fwd)
return self.output_shape
def infer_dtype(self, x1, x2):
args = {"x1": x1, "x2": x2}
valid_types = [mstype.float16, mstype.float32]
validator.check_tensor_type_same(args, valid_types, self.name)
return x1
class CumSum(PrimitiveWithInfer): class CumSum(PrimitiveWithInfer):
""" """
Computes the cumulative sum of input tensor along axis. Computes the cumulative sum of input tensor along axis.

View File

@ -0,0 +1,339 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import pytest
import numpy as np
import mindspore
from mindspore import Tensor
import mindspore.nn as nn
import mindspore.context as context
from mindspore.ops import operations as P
from mindspore.ops import composite as C
class NetTensorDot(nn.Cell):
def __init__(self, axes):
super(NetTensorDot, self).__init__()
self.td = P.TensorDot(axes)
def construct(self, x, y):
return self.td(x, y)
class GradNetwork(nn.Cell):
def __init__(self, network):
super(GradNetwork, self).__init__()
self.grad = C.GradOperation(get_all=True, sens_param=True)
self.network = network
def construct(self, input_data_a, input_data_b, sens):
gout = self.grad(self.network)(input_data_a, input_data_b, sens)
return gout
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tensor_dot_fp32():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
np.random.seed(12876)
shape_x1 = (1, 3, 9, 7)
shape_x2 = (9, 7, 3, 1)
axes = ((1, 3), (2, 1))
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetTensorDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
np_result = np.tensordot(x1, x2, axes)
np.testing.assert_array_almost_equal(ms_result_np, np_result)
# 1D
shape_x1 = (200)
shape_x2 = (200)
axes = 1
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetTensorDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
np_result = np.tensordot(x1, x2, axes)
np.allclose(ms_result_np, np_result)
# 2D
shape_x1 = (100, 300)
shape_x2 = (300, 700)
axes = ([1], [0])
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetTensorDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
np_result = np.tensordot(x1, x2, axes)
np.allclose(ms_result_np, np_result)
# 3D
shape_x1 = (110, 30, 900)
shape_x2 = (900, 70, 30)
axes = ((1, 2), (2, 0))
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetTensorDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
np_result = np.tensordot(x1, x2, axes)
np.allclose(ms_result_np, np_result)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tensor_dot_fp16():
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
np.random.seed(41329)
shape_x1 = (1, 3, 4, 1)
shape_x2 = (4, 1, 7, 5)
axes = 2 # select first N from
x1 = np.random.random(shape_x1).astype(np.float16)
x2 = np.random.random(shape_x2).astype(np.float16)
x1_tensor = Tensor(x1, dtype=mindspore.float16)
x2_tensor = Tensor(x2, dtype=mindspore.float16)
network = NetTensorDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
np_result = np.tensordot(x1, x2, axes)
np.testing.assert_array_almost_equal(ms_result_np, np_result)
# 1D
shape_x1 = (300)
shape_x2 = (300)
axes = 1
x1 = np.random.random(shape_x1).astype(np.float16)
x2 = np.random.random(shape_x2).astype(np.float16)
x1_tensor = Tensor(x1, dtype=mindspore.float16)
x2_tensor = Tensor(x2, dtype=mindspore.float16)
network = NetTensorDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
np_result = np.tensordot(x1, x2, axes)
np.testing.assert_array_almost_equal(ms_result_np, np_result)
# 2D
shape_x1 = (100, 300)
shape_x2 = (300, 100)
axes = ([1], [0])
x1 = np.random.random(shape_x1).astype(np.float16)
x2 = np.random.random(shape_x2).astype(np.float16)
x1_tensor = Tensor(x1, dtype=mindspore.float16)
x2_tensor = Tensor(x2, dtype=mindspore.float16)
network = NetTensorDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
np_result = np.tensordot(x1, x2, axes)
np.testing.assert_array_almost_equal(ms_result_np, np_result)
# 3D
shape_x1 = (60, 30, 450)
shape_x2 = (450, 90, 30)
axes = ((1, 2), (2, 0))
x1 = np.random.random(shape_x1).astype(np.float16)
x2 = np.random.random(shape_x2).astype(np.float16)
x1_tensor = Tensor(x1, dtype=mindspore.float16)
x2_tensor = Tensor(x2, dtype=mindspore.float16)
network = NetTensorDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
np_result = np.tensordot(x1, x2, axes)
np.testing.assert_array_almost_equal(ms_result_np, np_result)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tensor_dot_outer():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(2746)
shape_x1 = (1, 2, 3) # incompatable dims for x1 and x2
shape_x2 = (4, 5, 6)
axes = 0 # outer product does not require multiplicable dims
x1 = np.random.random(shape_x1).astype(np.float32)
x2 = np.random.random(shape_x2).astype(np.float32)
x1_tensor = Tensor(x1, dtype=mindspore.float32)
x2_tensor = Tensor(x2, dtype=mindspore.float32)
network = NetTensorDot(axes)
ms_result_np = network(x1_tensor, x2_tensor).asnumpy()
np_result = np.tensordot(x1, x2, axes)
np.testing.assert_array_almost_equal(ms_result_np, np_result)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tensor_dot_backprop():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
# TEST 1
shape_x1 = (2, 4, 2)
shape_x2 = (3, 2, 3)
axes = ((0,), (1,)) # select first N from
network = NetTensorDot(axes)
np.random.seed(115)
x1 = np.random.random(shape_x1).astype(np.float16)
np.random.seed(1467)
x2 = np.random.random(shape_x2).astype(np.float16)
x1_tensor = Tensor(x1, dtype=mindspore.float16)
x2_tensor = Tensor(x2, dtype=mindspore.float16)
np.random.seed(157)
grad = np.random.random((4, 2, 3, 3))
grad_tensor = Tensor(grad, dtype=mindspore.float16)
grad_network = GradNetwork(network)
dx1, dx2 = grad_network(x1_tensor, x2_tensor, grad_tensor)
dx1, dx2 = dx1.asnumpy(), dx2.asnumpy()
# precomputed
expect_dx1 = np.array([[[2.0293, 2.4473],
[2.9727, 1.4873],
[1.7910, 3.4727],
[2.4160, 1.7227]],
[[2.5547, 2.5039],
[3.4062, 2.3320],
[2.6270, 3.1543],
[2.1406, 1.7666]]])
expect_dx2 = np.array([[[2.1523, 2.9199, 0.8350],
[2.0254, 2.7734, 1.3213]],
[[2.6836, 2.4707, 1.0156],
[2.9746, 3.0254, 1.9199]],
[[1.8545, 1.7803, 1.3457],
[2.2676, 2.1797, 1.2764]]])
np.allclose(dx1, expect_dx1)
np.allclose(dx2, expect_dx2)
# TEST 2
shape_x1 = (10, 35)
shape_x2 = (20, 10)
axes = ((0,), (1,)) # select first N from
network = NetTensorDot(axes)
np.random.seed(215)
x1 = np.random.random(shape_x1).astype(np.float16)
np.random.seed(2467)
x2 = np.random.random(shape_x2).astype(np.float16)
x1_tensor = Tensor(x1, dtype=mindspore.float16)
x2_tensor = Tensor(x2, dtype=mindspore.float16)
np.random.seed(257)
grad = np.random.random((35, 20))
grad_tensor = Tensor(grad, dtype=mindspore.float16)
grad_network = GradNetwork(network)
dx1, dx2 = grad_network(x1_tensor, x2_tensor, grad_tensor)
dx1, dx2 = dx1.asnumpy(), dx2.asnumpy()
# precomputed
expect_dx1 = np.array([[5.9727, 4.6484, 5.1836, 4.3906, 5.1641, 5.1406, 5.1211, 6.5352, 4.9922,
4.4297, 4.4648, 6.5469, 6.2305, 4.8789, 6.8320, 5.3906, 4.7383, 6.0352,
4.7383, 4.4844, 5.3711, 6.2617, 4.6484, 5.8672, 4.7500, 6.0234, 3.6387,
5.3789, 5.9727, 5.7227, 6.0234, 4.9609, 5.0117, 5.4141, 5.1406],
[5.2305, 4.0078, 4.6328, 3.9238, 4.2773, 4.2539, 4.6797, 5.1289, 3.7910,
3.8887, 3.2930, 5.5898, 5.4219, 3.6211, 5.5234, 3.5391, 4.8516, 4.7539,
4.2500, 2.9785, 4.8867, 5.4648, 5.0195, 6.0195, 4.7109, 3.9727, 3.4922,
4.1484, 4.7969, 5.3555, 4.9414, 5.2969, 3.1992, 5.2031, 4.4648],
[5.2266, 5.2617, 5.3750, 4.7930, 4.9062, 5.4102, 4.9336, 6.9414, 4.4961,
4.4023, 4.7344, 5.8125, 4.9180, 4.7891, 5.9805, 5.2383, 4.6445, 6.1172,
4.8477, 3.7578, 4.3047, 5.7969, 4.5859, 6.0273, 4.3438, 4.7305, 4.0938,
4.8398, 5.8320, 5.3438, 5.3281, 4.8320, 4.0938, 4.9375, 5.3281],
[7.4297, 5.1484, 6.3477, 5.4844, 5.7852, 6.3906, 5.5234, 7.2383, 5.2969,
4.9844, 4.5625, 7.3047, 7.3789, 6.4453, 8.2266, 6.6172, 5.5547, 7.0234,
4.8594, 4.9531, 6.0469, 6.9258, 6.1055, 6.7539, 6.6953, 6.0430, 4.5117,
5.7344, 7.4297, 6.4219, 6.8125, 6.4141, 5.2773, 6.8828, 6.0430],
[5.7969, 4.7109, 5.8281, 4.5703, 5.5078, 6.4219, 4.8359, 7.1484, 4.2617,
4.8477, 4.2539, 5.6016, 6.4414, 5.7305, 6.4766, 5.4648, 4.5859, 6.5547,
5.5156, 3.3848, 5.1523, 5.5352, 4.9531, 6.5938, 5.2969, 4.6055, 5.2109,
4.4961, 5.8984, 5.4531, 5.8086, 5.7930, 5.0742, 5.4102, 4.9453],
[7.2188, 5.8789, 6.9453, 6.0039, 6.7188, 7.3359, 6.7695, 8.6172, 5.6680,
6.4219, 6.1836, 7.7695, 7.5391, 6.5312, 8.2812, 7.5352, 5.8867, 7.7070,
6.0039, 5.1172, 6.4844, 7.4297, 5.9219, 7.5078, 6.3125, 6.9805, 5.3750,
5.9805, 7.2148, 7.6484, 7.8828, 6.7695, 5.7109, 6.8828, 6.9023],
[5.7656, 4.3633, 4.5039, 4.4375, 4.3867, 5.4336, 4.3672, 5.5469, 3.5742,
4.0508, 3.7402, 5.9141, 5.7734, 4.5781, 5.6719, 4.5625, 4.5391, 5.1719,
4.3945, 3.4844, 4.9297, 5.7227, 4.8203, 5.8125, 4.8633, 4.3125, 3.6641,
4.3789, 5.6133, 5.1758, 4.9141, 5.8008, 4.0391, 5.8984, 4.3594],
[4.7734, 3.4238, 4.3477, 3.6270, 4.4883, 5.2031, 3.9023, 5.0078, 2.9355,
3.8477, 3.4648, 5.1445, 4.8398, 4.4297, 5.1641, 4.2422, 4.2695, 4.6992,
4.5039, 2.5176, 4.2500, 5.6680, 4.1875, 5.4141, 3.6094, 3.1758, 3.8398,
3.9180, 5.3320, 4.6523, 3.9531, 4.8281, 3.9863, 4.8867, 4.3711],
[6.7578, 5.3164, 6.0000, 4.4531, 5.8789, 6.3750, 5.1094, 7.0391, 4.5781,
4.8633, 4.5156, 6.6641, 6.3594, 5.5664, 6.9453, 5.5820, 5.1992, 6.9570,
5.3242, 3.8574, 5.1445, 6.0547, 5.0273, 6.9180, 5.1914, 4.6914, 4.6445,
5.1289, 5.8711, 6.2070, 6.1953, 5.7695, 4.7617, 5.5898, 4.9492],
[4.9180, 4.0117, 4.1211, 3.4629, 3.6445, 4.6602, 3.7031, 4.9062, 4.1133,
3.0020, 3.2246, 4.6562, 4.4727, 3.3828, 5.2695, 4.0078, 3.2559, 4.9688,
3.5742, 3.1133, 3.8223, 4.7578, 3.7949, 4.8438, 4.0664, 4.4336, 3.0957,
4.4375, 4.2969, 4.1758, 4.5234, 4.2930, 3.9434, 4.8281, 3.0703]])
expect_dx2 = np.array([[6.7930, 7.0000, 8.8203, 9.7031, 8.1250,
6.7422, 8.4844, 8.7031, 7.2891, 10.1484],
[8.5781, 8.1641, 9.9609, 9.2344, 9.3281,
8.1484, 9.8984, 9.0391, 7.9805, 11.0469],
[8.1016, 7.0781, 8.9688, 10.0938, 9.6641,
7.1523, 8.2969, 8.8594, 8.3047, 10.2578],
[7.0938, 7.3477, 9.3594, 8.2422, 7.9141,
6.5156, 8.2812, 8.2266, 6.9766, 8.5703],
[9.2891, 9.2500, 11.6875, 9.5234, 10.1172,
8.8125, 9.5781, 9.5547, 8.9688, 11.2266],
[9.3594, 7.7539, 9.2500, 9.2500, 8.1094,
8.0859, 8.7344, 8.2031, 8.5859, 10.3203],
[8.7344, 7.7227, 10.2578, 10.1641, 9.3984,
8.1719, 8.0156, 8.6953, 8.6797, 10.6875],
[8.8750, 7.9922, 10.2422, 10.3984, 9.5234,
8.5156, 8.7266, 8.8125, 8.2578, 10.2578],
[9.5703, 8.9844, 10.0547, 10.3047, 10.4062,
8.2422, 10.7031, 9.7891, 9.2969, 11.0078],
[9.2891, 9.5391, 10.5938, 10.5078, 9.8203,
8.5156, 9.0859, 9.0703, 8.7812, 10.8750],
[8.6094, 8.2734, 10.2734, 9.7891, 9.4531,
7.5820, 8.4609, 8.6094, 7.7578, 10.3438],
[8.2891, 8.7578, 9.3906, 9.6016, 9.4375,
7.1016, 8.6875, 8.1875, 8.2188, 9.3672],
[7.2969, 6.6953, 9.3984, 8.2422, 8.3438,
7.5547, 7.6445, 7.5820, 7.5156, 9.0781],
[8.3906, 7.3516, 8.5938, 9.2422, 8.7734,
8.0781, 9.1250, 7.8359, 7.7891, 10.9375],
[9.9219, 8.8281, 9.4141, 10.2500, 9.8047,
8.5234, 8.5391, 8.4609, 8.5859, 11.2422],
[6.8984, 6.4570, 8.0000, 6.4688, 7.4609,
6.6016, 7.0352, 6.6797, 6.5586, 7.7070],
[8.0625, 7.4805, 8.7578, 8.3281, 8.2188,
7.4023, 8.5312, 7.5312, 7.1445, 10.3750],
[7.7773, 6.6484, 9.1094, 8.0078, 7.8281,
7.1016, 8.2422, 8.1562, 6.8828, 10.3281],
[8.3281, 8.3672, 9.7656, 10.4922, 8.2500,
7.5625, 8.4922, 8.9844, 8.0703, 10.3438],
[7.5195, 7.0430, 7.9453, 8.4375, 7.6641,
6.9688, 7.7734, 8.7734, 6.3672, 9.4766]])
np.allclose(dx1, expect_dx1)
np.allclose(dx2, expect_dx2)