move testcases

This commit is contained in:
zhujingxuan 2021-11-29 15:01:42 +08:00
parent 60bfef499f
commit a18b9e703e
8 changed files with 389 additions and 649 deletions

View File

@ -1,43 +0,0 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from typing import Generic
import mindspore.context as context
from mindspore import Tensor
from mindspore.scipy.linalg import cholesky
import scipy as scp
import numpy as np
import pytest
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
np.random.seed(0)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('lower', [True])
@pytest.mark.parametrize('dtype', [np.float64])
def test_cholesky(lower: bool, dtype: Generic):
"""
Feature: ALL TO ALL
Description: test cases for cholesky [N,N]
Expectation: the result match scipy cholesky
"""
a = np.array([[4, 12, -6], [12, 37, -43], [-16, -43, 98]], dtype=dtype)
tensor_a = Tensor(a)
scp_c = scp.linalg.cholesky(a, lower=lower)
mscp_c = cholesky(tensor_a, lower=lower)
assert np.allclose(scp_c, mscp_c.asnumpy())

View File

@ -1,99 +0,0 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test for solve eigenvalues & eigen vectors"""
import pytest
import numpy as np
import mindspore.context as context
from mindspore import Tensor
from mindspore.scipy.ops import EigNet
np.random.seed(0)
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
def match(v, v_, error=0):
if error > 0:
np.testing.assert_almost_equal(v, v_, decimal=error)
else:
np.testing.assert_equal(v, v_)
@pytest.mark.parametrize('n', [4, 6, 9, 10])
@pytest.mark.platform_x86_cpu
def test_eig_net(n: int):
"""
Feature: ALL To ALL
Description: test cases for eigen decomposition test cases for Ax= lambda * x /( A- lambda * E)X=0
Expectation: the result match to numpy
"""
# test for real scalar float 32
rtol = 1e-3
atol = 1e-4
msp_eig = EigNet(True)
A = np.array(np.random.rand(n, n), dtype=np.float32)
tensor_a = Tensor(np.array(A).astype(np.float32))
msp_w, msp_v = msp_eig(tensor_a)
assert np.allclose(A @ msp_v.asnumpy() - msp_v.asnumpy() @ np.diag(msp_w.asnumpy()), np.zeros((n, n)), rtol, atol)
# test case for real scalar double 64
A = np.array(np.random.rand(n, n), dtype=np.float64)
rtol = 1e-5
atol = 1e-8
msp_eig = EigNet(True)
msp_w, msp_v = msp_eig(Tensor(np.array(A).astype(np.float64)))
# Compare with scipy
# sp_w, sp_v = sp.linalg.eig(A.astype(np.float64))
assert np.allclose(A @ msp_v.asnumpy() - msp_v.asnumpy() @ np.diag(msp_w.asnumpy()), np.zeros((n, n)), rtol, atol)
# test case for complex64
rtol = 1e-3
atol = 1e-4
A = np.array(np.random.rand(n, n), dtype=np.complex64)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
msp_eig = EigNet(True)
msp_w, msp_v = msp_eig(Tensor(np.array(A).astype(np.complex64)))
# Compare with scipy, scipy passed
# sp_w, sp_v = sp.linalg.eig(A.astype(np.complex128))
# assert np.allclose(A @ sp_v - sp_v @ np.diag(sp_w), np.zeros((n, n)), rtol, atol)
# print(A @ msp_v.asnumpy() - msp_v.asnumpy() @ np.diag(msp_w.asnumpy()))
assert np.allclose(A @ msp_v.asnumpy() - msp_v.asnumpy() @ np.diag(msp_w.asnumpy()), np.zeros((n, n)), rtol, atol)
# test for complex128
rtol = 1e-5
atol = 1e-8
A = np.array(np.random.rand(n, n), dtype=np.complex128)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
msp_eig = EigNet(True)
msp_w, msp_v = msp_eig(Tensor(np.array(A).astype(np.complex128)))
# Com`pare with scipy, scipy passed
# sp_w, sp_v = sp.linalg.eig(A.astype(np.complex128))
# assert np.allclose(A @ sp_v - sp_v @ np.diag(sp_w), np.zeros((n, n)), rtol, atol)
assert np.allclose(A @ msp_v.asnumpy() - msp_v.asnumpy() @ np.diag(msp_w.asnumpy()), np.zeros((n, n)), rtol, atol)
msp_eig = EigNet(False)
msp_w0 = msp_eig(Tensor(np.array(A).astype(np.complex128)))
assert np.allclose(msp_w0.asnumpy() - msp_w.asnumpy(), np.zeros((n, n)), rtol, atol)

View File

@ -1,133 +0,0 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test for solve eigenvalues & eigen vectors"""
import pytest
import numpy as np
import mindspore.context as context
from mindspore import Tensor
from mindspore.scipy.ops import EighNet
np.random.seed(0)
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
def match(v, v_, error=0):
if error > 0:
np.testing.assert_almost_equal(v, v_, decimal=error)
else:
np.testing.assert_equal(v, v_)
def create_sym_pos_matrix(m, n, dtype):
a = (np.random.random((m, n)) + np.eye(m, n)).astype(dtype)
return np.dot(a, a.T)
@pytest.mark.parametrize('n', [4, 6, 9, 10])
@pytest.mark.platform_x86_cpu
def test_eigh_net(n: int):
"""
Feature: ALL To ALL
Description: test cases for eigen decomposition test cases for Ax= lambda * x /( A- lambda * E)X=0
Expectation: the result match to numpy
"""
# test for real scalar float 32
rtol = 1e-3
atol = 1e-4
A = create_sym_pos_matrix(n, n, np.float32)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.float32)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.float32)))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).T)
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test case for real scalar double 64
A = np.random.rand(n, n)
rtol = 1e-5
atol = 1e-8
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.float64)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.float64)))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).T)
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test for real scalar float64 no vector
msp_eigh = EighNet(False, True)
msp_wl0 = msp_eigh(Tensor(np.array(A).astype(np.float64)))
msp_eigh = EighNet(False, False)
msp_wu0 = msp_eigh(Tensor(np.array(A).astype(np.float64)))
assert np.allclose(msp_wl.asnumpy() - msp_wl0.asnumpy(), np.zeros((n, n)), rtol, atol)
assert np.allclose(msp_wu.asnumpy() - msp_wu0.asnumpy(), np.zeros((n, n)), rtol, atol)
# test case for complex64
rtol = 1e-3
atol = 1e-4
A = np.array(np.random.rand(n, n), dtype=np.complex64)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).conj().T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).conj().T)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.complex64)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.complex64)))
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test for complex128
rtol = 1e-5
atol = 1e-8
A = np.array(np.random.rand(n, n), dtype=np.complex128)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).conj().T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).conj().T)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test for real scalar complex128 no vector
msp_eigh = EighNet(False, True)
msp_wl0 = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
msp_eigh = EighNet(False, False)
msp_wu0 = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
assert np.allclose(msp_wl.asnumpy() - msp_wl0.asnumpy(), np.zeros((n, n)), rtol, atol)
assert np.allclose(msp_wu.asnumpy() - msp_wu0.asnumpy(), np.zeros((n, n)), rtol, atol)

View File

@ -1,104 +0,0 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test for SolveTriangular"""
import pytest
import numpy as np
from scipy.linalg import solve_triangular
import mindspore.context as context
from mindspore import Tensor
from mindspore.scipy.linalg import solve_triangular as mind_solve
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
np.random.seed(0)
def match(a, b, lower, unit_diagonal, trans):
sci_x = solve_triangular(
a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)
mind_x = mind_solve(Tensor(a), Tensor(
b), lower=lower, unit_diagonal=unit_diagonal, trans=trans).asnumpy()
print(a.flatten())
print(b.flatten())
print(sci_x.flatten())
print(mind_x.flatten())
print(f'lower: {lower}, unit_diagonal: {unit_diagonal}, trans: {trans}')
np.testing.assert_almost_equal(sci_x, mind_x, decimal=5)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [10, 20])
@pytest.mark.parametrize('trans', ["N", "T"])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
@pytest.mark.parametrize('lower', [False, True])
@pytest.mark.parametrize('unit_diagonal', [False])
def test_2d(n: int, dtype, lower: bool, unit_diagonal: bool, trans: str):
"""
Feature: ALL TO ALL
Description: test cases for [N x N] X [N X 1]
Expectation: the result match scipy
"""
# add Identity matrix to make matrix A non-singular
a = (np.random.random((n, n)) + np.eye(n)).astype(dtype)
b = np.random.random((n, 1)).astype(dtype)
match(a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [10, 20])
@pytest.mark.parametrize('trans', ["N", "T"])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
@pytest.mark.parametrize('lower', [False, True])
@pytest.mark.parametrize('unit_diagonal', [False, True])
def test_1d(n: int, dtype, lower: bool, unit_diagonal: bool, trans: str):
"""
Feature: ALL TO ALL
Description: test cases for [N x N] X [N]
Expectation: the result match scipy
"""
# add Identity matrix to make matrix A non-singular
a = (np.random.random((n, n)) + np.eye(n)).astype(dtype)
b = np.random.random(n).astype(dtype)
match(a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('shape', [(10, 20)])
@pytest.mark.parametrize('trans', ["N", "T"])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
@pytest.mark.parametrize('lower', [False, True])
@pytest.mark.parametrize('unit_diagonal', [False, True])
def test_matrix(shape: int, dtype, lower: bool, unit_diagonal: bool, trans: str):
"""
Feature: ALL TO ALL
Description: test cases for [N x N] X [N]
Expectation: the result match scipy
"""
if trans == 'T':
n, m = shape
else:
m, n = shape
# add Identity matrix to make matrix A non-singular
a = (np.random.random((m, m)) + np.eye(m)).astype(dtype)
b = np.random.random((m, n)).astype(dtype)
match(a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)

View File

@ -1,41 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
from typing import Generic
import mindspore.context as context
from mindspore import Tensor
from mindspore.scipy.linalg import cholesky
import numpy as np
import scipy as scp
import pytest
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('lower', [True])
@pytest.mark.parametrize('dtype', [np.float64])
def test_scipy_cholesky(lower: bool, dtype: Generic):
"""
Feature: ALL TO ALL
Description: test cases for new scipy cholesky [N,N]
Expectation: the result match scipy cholesky
"""
a = np.array([[4, 12, -16], [12, 37, -43], [-16, -43, 98]]).astype(dtype=dtype)
tensor_a = Tensor(a)
output = cholesky(tensor_a, lower=lower)
expect = scp.linalg.cholesky(a, lower=lower)
assert np.allclose(expect, output.asnumpy())

View File

@ -1,127 +0,0 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test for solve eigenvalues & eigen vectors"""
import pytest
import numpy as np
from mindspore import Tensor
from mindspore.scipy.ops import EighNet
np.random.seed(0)
def match(v, v_, error=0):
if error > 0:
np.testing.assert_almost_equal(v, v_, decimal=error)
else:
np.testing.assert_equal(v, v_)
def create_sym_pos_matrix(m, n, dtype):
a = (np.random.random((m, n)) + np.eye(m, n)).astype(dtype)
return np.dot(a, a.T)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [4, 6, 8, 20])
def test_eigh_net(n: int):
"""
Feature: ALL To ALL
Description: test cases for eigen decomposition test cases for Ax= lambda * x /( A- lambda * E)X=0
Expectation: the result match to numpy
"""
# test for real scalar float 32
rtol = 1e-3
atol = 1e-4
A = create_sym_pos_matrix(n, n, np.float32)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.float32)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.float32)))
assert np.allclose(A @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(A @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test case for real scalar double 64
A = create_sym_pos_matrix(n, n, np.float64)
rtol = 1e-5
atol = 1e-8
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.float64)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.float64)))
assert np.allclose(A @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(A @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test for real scalar float64 no vector
msp_eigh = EighNet(False, True)
msp_wl0 = msp_eigh(Tensor(np.array(A).astype(np.float64)))
msp_eigh = EighNet(False, False)
msp_wu0 = msp_eigh(Tensor(np.array(A).astype(np.float64)))
assert np.allclose(msp_wl.asnumpy() - msp_wl0.asnumpy(), np.zeros((n, n)), rtol, atol)
assert np.allclose(msp_wu.asnumpy() - msp_wu0.asnumpy(), np.zeros((n, n)), rtol, atol)
# test case for complex64
rtol = 1e-3
atol = 1e-4
A = np.array(np.random.rand(n, n), dtype=np.complex64)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).conj().T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).conj().T)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.complex64)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.complex64)))
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()),
np.zeros((n, n)), rtol, atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()),
np.zeros((n, n)), rtol, atol)
# test for complex128
rtol = 1e-5
atol = 1e-8
A = np.array(np.random.rand(n, n), dtype=np.complex128)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).conj().T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).conj().T)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()),
np.zeros((n, n)), rtol, atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()),
np.zeros((n, n)), rtol, atol)
# test for real scalar complex128 no vector
msp_eigh = EighNet(False, True)
msp_wl0 = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
msp_eigh = EighNet(False, False)
msp_wu0 = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
assert np.allclose(msp_wl.asnumpy() - msp_wl0.asnumpy(), np.zeros((n, n)), rtol, atol)
assert np.allclose(msp_wu.asnumpy() - msp_wu0.asnumpy(), np.zeros((n, n)), rtol, atol)

View File

@ -1,102 +0,0 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test for SolveTriangular"""
import pytest
import numpy as np
from scipy.linalg import solve_triangular
import mindspore.context as context
from mindspore import Tensor
from mindspore.scipy.linalg import solve_triangular as mind_solve
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
np.random.seed(0)
def match(a, b, lower, unit_diagonal, trans):
sci_x = solve_triangular(
a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)
mind_x = mind_solve(Tensor(a), Tensor(
b), lower=lower, unit_diagonal=unit_diagonal, trans=trans).asnumpy()
print(sci_x.flatten())
print(mind_x.flatten())
print(f'lower: {lower}, unit_diagonal: {unit_diagonal}, trans: {trans}')
np.testing.assert_almost_equal(sci_x, mind_x, decimal=5)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [10, 20])
@pytest.mark.parametrize('trans', ["N", "T"])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
@pytest.mark.parametrize('lower', [False, True])
@pytest.mark.parametrize('unit_diagonal', [False])
def test_2d(n: int, dtype, lower: bool, unit_diagonal: bool, trans: str):
"""
Feature: ALL TO ALL
Description: test cases for [N x N] X [N X 1]
Expectation: the result match scipy
"""
# add Identity matrix to make matrix A non-singular
a = (np.random.random((n, n)) + np.eye(n)).astype(dtype)
b = np.random.random((n, 1)).astype(dtype)
match(a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [10, 20])
@pytest.mark.parametrize('trans', ["N", "T"])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
@pytest.mark.parametrize('lower', [False, True])
@pytest.mark.parametrize('unit_diagonal', [False, True])
def test_1d(n: int, dtype, lower: bool, unit_diagonal: bool, trans: str):
"""
Feature: ALL TO ALL
Description: test cases for [N x N] X [N]
Expectation: the result match scipy
"""
# add Identity matrix to make matrix A non-singular
a = (np.random.random((n, n)) + np.eye(n)).astype(dtype)
b = np.random.random(n).astype(dtype)
match(a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('shape', [(4, 5), (10, 20)])
@pytest.mark.parametrize('trans', ["N", "T"])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
@pytest.mark.parametrize('lower', [False, True])
@pytest.mark.parametrize('unit_diagonal', [False, True])
def test_matrix(shape: int, dtype, lower: bool, unit_diagonal: bool, trans: str):
"""
Feature: ALL TO ALL
Description: test cases for [N x N] X [N]
Expectation: the result match scipy
"""
if trans == 'T':
n, m = shape
else:
m, n = shape
# add Identity matrix to make matrix A non-singular
a = (np.random.random((m, m)) + np.eye(m)).astype(dtype)
b = np.random.random((m, n)).astype(dtype)
match(a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)

View File

@ -0,0 +1,389 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""st for scipy.ops."""
from typing import Generic
import pytest
import numpy as np
import scipy as scp
from scipy.linalg import solve_triangular
from mindspore import Tensor, context
from mindspore.scipy.ops import EighNet, EigNet, Cholesky, SolveTriangular
from tests.st.scipy_st.utils import create_sym_pos_matrix
np.random.seed(0)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [3, 5, 7])
@pytest.mark.parametrize('lower', [True, False])
@pytest.mark.parametrize('dtype', [np.float64])
def test_cholesky(n: int, lower: bool, dtype: Generic):
"""
Feature: ALL TO ALL
Description: test cases for cholesky [N,N]
Expectation: the result match scipy cholesky
"""
context.set_context(mode=context.GRAPH_MODE)
a = create_sym_pos_matrix((n, n), dtype)
tensor_a = Tensor(a)
expect = scp.linalg.cholesky(a, lower=lower)
cholesky_net = Cholesky(lower=lower, clean=True)
output = cholesky_net(tensor_a)
assert np.allclose(expect, output.asnumpy())
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [4, 6, 9, 10])
def test_eig_net(n: int):
"""
Feature: ALL To ALL
Description: test cases for eigen decomposition test cases for Ax= lambda * x /( A- lambda * E)X=0
Expectation: the result match to numpy
"""
context.set_context(mode=context.GRAPH_MODE)
# test for real scalar float 32
rtol = 1e-3
atol = 1e-4
msp_eig = EigNet(True)
A = np.array(np.random.rand(n, n), dtype=np.float32)
tensor_a = Tensor(np.array(A).astype(np.float32))
msp_w, msp_v = msp_eig(tensor_a)
assert np.allclose(A @ msp_v.asnumpy() - msp_v.asnumpy() @ np.diag(msp_w.asnumpy()), np.zeros((n, n)), rtol, atol)
# test case for real scalar double 64
A = np.array(np.random.rand(n, n), dtype=np.float64)
rtol = 1e-5
atol = 1e-8
msp_eig = EigNet(True)
msp_w, msp_v = msp_eig(Tensor(np.array(A).astype(np.float64)))
# Compare with scipy
# sp_w, sp_v = sp.linalg.eig(A.astype(np.float64))
assert np.allclose(A @ msp_v.asnumpy() - msp_v.asnumpy() @ np.diag(msp_w.asnumpy()), np.zeros((n, n)), rtol, atol)
# test case for complex64
rtol = 1e-3
atol = 1e-4
A = np.array(np.random.rand(n, n), dtype=np.complex64)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
msp_eig = EigNet(True)
msp_w, msp_v = msp_eig(Tensor(np.array(A).astype(np.complex64)))
# Compare with scipy, scipy passed
# sp_w, sp_v = sp.linalg.eig(A.astype(np.complex128))
# assert np.allclose(A @ sp_v - sp_v @ np.diag(sp_w), np.zeros((n, n)), rtol, atol)
# print(A @ msp_v.asnumpy() - msp_v.asnumpy() @ np.diag(msp_w.asnumpy()))
assert np.allclose(A @ msp_v.asnumpy() - msp_v.asnumpy() @ np.diag(msp_w.asnumpy()), np.zeros((n, n)), rtol, atol)
# test for complex128
rtol = 1e-5
atol = 1e-8
A = np.array(np.random.rand(n, n), dtype=np.complex128)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
msp_eig = EigNet(True)
msp_w, msp_v = msp_eig(Tensor(np.array(A).astype(np.complex128)))
# Com`pare with scipy, scipy passed
# sp_w, sp_v = sp.linalg.eig(A.astype(np.complex128))
# assert np.allclose(A @ sp_v - sp_v @ np.diag(sp_w), np.zeros((n, n)), rtol, atol)
assert np.allclose(A @ msp_v.asnumpy() - msp_v.asnumpy() @ np.diag(msp_w.asnumpy()), np.zeros((n, n)), rtol, atol)
msp_eig = EigNet(False)
msp_w0 = msp_eig(Tensor(np.array(A).astype(np.complex128)))
assert np.allclose(msp_w0.asnumpy() - msp_w.asnumpy(), np.zeros((n, n)), rtol, atol)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [4, 6, 9, 10])
def test_eigh_net_cpu(n: int):
"""
Feature: ALL To ALL
Description: test cases for eigen decomposition test cases for Ax= lambda * x /( A- lambda * E)X=0
Expectation: the result match to numpy
"""
context.set_context(mode=context.GRAPH_MODE)
# test for real scalar float 32
rtol = 1e-3
atol = 1e-4
A = create_sym_pos_matrix((n, n), np.float32)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.float32)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.float32)))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).T)
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test case for real scalar double 64
A = np.random.rand(n, n)
rtol = 1e-5
atol = 1e-8
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.float64)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.float64)))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).T)
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test for real scalar float64 no vector
msp_eigh = EighNet(False, True)
msp_wl0 = msp_eigh(Tensor(np.array(A).astype(np.float64)))
msp_eigh = EighNet(False, False)
msp_wu0 = msp_eigh(Tensor(np.array(A).astype(np.float64)))
assert np.allclose(msp_wl.asnumpy() - msp_wl0.asnumpy(), np.zeros((n, n)), rtol, atol)
assert np.allclose(msp_wu.asnumpy() - msp_wu0.asnumpy(), np.zeros((n, n)), rtol, atol)
# test case for complex64
rtol = 1e-3
atol = 1e-4
A = np.array(np.random.rand(n, n), dtype=np.complex64)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).conj().T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).conj().T)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.complex64)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.complex64)))
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test for complex128
rtol = 1e-5
atol = 1e-8
A = np.array(np.random.rand(n, n), dtype=np.complex128)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).conj().T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).conj().T)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test for real scalar complex128 no vector
msp_eigh = EighNet(False, True)
msp_wl0 = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
msp_eigh = EighNet(False, False)
msp_wu0 = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
assert np.allclose(msp_wl.asnumpy() - msp_wl0.asnumpy(), np.zeros((n, n)), rtol, atol)
assert np.allclose(msp_wu.asnumpy() - msp_wu0.asnumpy(), np.zeros((n, n)), rtol, atol)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [4, 6, 8, 20])
def test_eigh_net_gpu(n: int):
"""
Feature: ALL To ALL
Description: test cases for eigen decomposition test cases for Ax= lambda * x /( A- lambda * E)X=0
Expectation: the result match to numpy
"""
context.set_context(mode=context.GRAPH_MODE)
# test for real scalar float 32
rtol = 1e-3
atol = 1e-4
A = create_sym_pos_matrix((n, n), np.float32)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.float32)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.float32)))
assert np.allclose(A @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(A @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test case for real scalar double 64
A = create_sym_pos_matrix((n, n), np.float64)
rtol = 1e-5
atol = 1e-8
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.float64)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.float64)))
assert np.allclose(A @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()), np.zeros((n, n)), rtol,
atol)
assert np.allclose(A @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()), np.zeros((n, n)), rtol,
atol)
# test for real scalar float64 no vector
msp_eigh = EighNet(False, True)
msp_wl0 = msp_eigh(Tensor(np.array(A).astype(np.float64)))
msp_eigh = EighNet(False, False)
msp_wu0 = msp_eigh(Tensor(np.array(A).astype(np.float64)))
assert np.allclose(msp_wl.asnumpy() - msp_wl0.asnumpy(), np.zeros((n, n)), rtol, atol)
assert np.allclose(msp_wu.asnumpy() - msp_wu0.asnumpy(), np.zeros((n, n)), rtol, atol)
# test case for complex64
rtol = 1e-3
atol = 1e-4
A = np.array(np.random.rand(n, n), dtype=np.complex64)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).conj().T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).conj().T)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.complex64)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.complex64)))
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()),
np.zeros((n, n)), rtol, atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()),
np.zeros((n, n)), rtol, atol)
# test for complex128
rtol = 1e-5
atol = 1e-8
A = np.array(np.random.rand(n, n), dtype=np.complex128)
for i in range(0, n):
for j in range(0, n):
if i == j:
A[i][j] = complex(np.random.rand(1, 1), 0)
else:
A[i][j] = complex(np.random.rand(1, 1), np.random.rand(1, 1))
sym_Al = (np.tril((np.tril(A) - np.tril(A).T)) + np.tril(A).conj().T)
sym_Au = (np.triu((np.triu(A) - np.triu(A).T)) + np.triu(A).conj().T)
msp_eigh = EighNet(True, True)
msp_wl, msp_vl = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
msp_eigh = EighNet(True, False)
msp_wu, msp_vu = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
assert np.allclose(sym_Al @ msp_vl.asnumpy() - msp_vl.asnumpy() @ np.diag(msp_wl.asnumpy()),
np.zeros((n, n)), rtol, atol)
assert np.allclose(sym_Au @ msp_vu.asnumpy() - msp_vu.asnumpy() @ np.diag(msp_wu.asnumpy()),
np.zeros((n, n)), rtol, atol)
# test for real scalar complex128 no vector
msp_eigh = EighNet(False, True)
msp_wl0 = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
msp_eigh = EighNet(False, False)
msp_wu0 = msp_eigh(Tensor(np.array(A).astype(np.complex128)))
assert np.allclose(msp_wl.asnumpy() - msp_wl0.asnumpy(), np.zeros((n, n)), rtol, atol)
assert np.allclose(msp_wu.asnumpy() - msp_wu0.asnumpy(), np.zeros((n, n)), rtol, atol)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [10, 20])
@pytest.mark.parametrize('trans', ["N", "T"])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
@pytest.mark.parametrize('lower', [False, True])
@pytest.mark.parametrize('unit_diagonal', [False])
def test_solve_triangular_2d(n: int, dtype, lower: bool, unit_diagonal: bool, trans: str):
"""
Feature: ALL TO ALL
Description: test cases for [N x N] X [N X 1]
Expectation: the result match scipy
"""
context.set_context(mode=context.GRAPH_MODE)
a = (np.random.random((n, n)) + np.eye(n)).astype(dtype)
b = np.random.random((n, 1)).astype(dtype)
expect = solve_triangular(a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)
solve = SolveTriangular(lower, unit_diagonal, trans)
output = solve(Tensor(a), Tensor(b)).asnumpy()
np.testing.assert_almost_equal(expect, output, decimal=5)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('n', [10, 20])
@pytest.mark.parametrize('trans', ["N", "T"])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
@pytest.mark.parametrize('lower', [False, True])
@pytest.mark.parametrize('unit_diagonal', [False, True])
def test_solve_triangular_1d(n: int, dtype, lower: bool, unit_diagonal: bool, trans: str):
"""
Feature: ALL TO ALL
Description: test cases for [N x N] X [N]
Expectation: the result match scipy
"""
context.set_context(mode=context.GRAPH_MODE)
a = (np.random.random((n, n)) + np.eye(n)).astype(dtype)
b = np.random.random(n).astype(dtype)
expect = solve_triangular(a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)
solve = SolveTriangular(lower, unit_diagonal, trans)
output = solve(Tensor(a), Tensor(b)).asnumpy()
np.testing.assert_almost_equal(expect, output, decimal=5)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('shape', [(4, 5), (10, 20)])
@pytest.mark.parametrize('trans', ["N", "T"])
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
@pytest.mark.parametrize('lower', [False, True])
@pytest.mark.parametrize('unit_diagonal', [False, True])
def test_solve_triangular_matrix(shape: int, dtype, lower: bool, unit_diagonal: bool, trans: str):
"""
Feature: ALL TO ALL
Description: test cases for [N x N] X [N]
Expectation: the result match scipy
"""
if trans == 'T':
n, m = shape
else:
m, n = shape
context.set_context(mode=context.GRAPH_MODE)
a = (np.random.random((m, m)) + np.eye(m)).astype(dtype)
b = np.random.random((m, n)).astype(dtype)
expect = solve_triangular(a, b, lower=lower, unit_diagonal=unit_diagonal, trans=trans)
solve = SolveTriangular(lower, unit_diagonal, trans)
output = solve(Tensor(a), Tensor(b)).asnumpy()
np.testing.assert_almost_equal(expect, output, decimal=5)