forked from mindspore-Ecosystem/mindspore
!33956 Add a nn cell for softsign.
Merge pull request !33956 from liqiliang/softsign-cpu
This commit is contained in:
commit
a0a9c942c8
|
@ -115,6 +115,7 @@ MindSpore中 `mindspore.nn` 接口与上一版本相比,新增、删除和支
|
|||
mindspore.nn.LeakyReLU
|
||||
mindspore.nn.LogSigmoid
|
||||
mindspore.nn.LogSoftmax
|
||||
mindspore.nn.Softsign
|
||||
mindspore.nn.PReLU
|
||||
mindspore.nn.ReLU
|
||||
mindspore.nn.ReLU6
|
||||
|
|
|
@ -0,0 +1,26 @@
|
|||
mindspore.nn.Softsign
|
||||
=====================
|
||||
|
||||
.. py:class:: mindspore.nn.Softsign
|
||||
|
||||
Softsign激活函数。
|
||||
|
||||
按元素计算Softsign激活函数。
|
||||
|
||||
Softsign函数定义为:
|
||||
|
||||
.. math::
|
||||
\text{SoftSign}(x) = \frac{x}{1 + |x|}
|
||||
|
||||
**输入:**
|
||||
|
||||
**input_x** (Tensor) - shape为 :math:`(N, *)` 的Tensor, 其中 :math:`*` 表示任意个数的维度。它的数据类型必须为float16或float32。
|
||||
|
||||
**输出:**
|
||||
|
||||
Tensor,数据类型和shape与 `input_x` 相同。
|
||||
|
||||
**异常:**
|
||||
|
||||
- **TypeError** - `input_x` 不是Tensor。
|
||||
- **TypeError** - `input_x` 的数据类型既不是float16也不是float32。
|
|
@ -115,6 +115,7 @@ Nonlinear Activation Function Layer
|
|||
mindspore.nn.LeakyReLU
|
||||
mindspore.nn.LogSigmoid
|
||||
mindspore.nn.LogSoftmax
|
||||
mindspore.nn.Softsign
|
||||
mindspore.nn.PReLU
|
||||
mindspore.nn.ReLU
|
||||
mindspore.nn.ReLU6
|
||||
|
|
|
@ -32,6 +32,7 @@ __all__ = ['Softmax',
|
|||
'GELU',
|
||||
'FastGelu',
|
||||
'Sigmoid',
|
||||
'Softsign',
|
||||
'PReLU',
|
||||
'get_activation',
|
||||
'LeakyReLU',
|
||||
|
@ -612,6 +613,49 @@ class Sigmoid(Cell):
|
|||
return self.sigmoid(x)
|
||||
|
||||
|
||||
class Softsign(Cell):
|
||||
r"""
|
||||
Softsign activation function.
|
||||
|
||||
Applies the Softsign function element-wise.
|
||||
|
||||
Softsign is defined as:
|
||||
|
||||
.. math::
|
||||
|
||||
\text{SoftSign}(x) = \frac{x}{1 + |x|}
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
|
||||
additional dimensions, with float16 or float32 data type.
|
||||
|
||||
Outputs:
|
||||
Tensor, with the same type and shape as the `input_x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input_x` is not a Tensor.
|
||||
TypeError: If dtype of `input_x` is neither float16 nor float32.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` `CPU``
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([0, -1, 2, 30, -30]), mindspore.float32)
|
||||
>>> softsign = nn.Softsign()
|
||||
>>> output = softsign(input_x)
|
||||
>>> print(output)
|
||||
[ 0. -0.5 0.6666667 0.9677419 -0.9677419]
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize Softsign."""
|
||||
super(Softsign, self).__init__()
|
||||
self.softsign = P.Softsign()
|
||||
|
||||
def construct(self, x):
|
||||
return self.softsign(x)
|
||||
|
||||
|
||||
class PReLU(Cell):
|
||||
r"""
|
||||
PReLU activation function.
|
||||
|
@ -665,6 +709,7 @@ class PReLU(Cell):
|
|||
[0.9 0.9]]]]
|
||||
|
||||
"""
|
||||
|
||||
@cell_attr_register(attrs="")
|
||||
def __init__(self, channel=1, w=0.25):
|
||||
"""Initialize PReLU."""
|
||||
|
@ -952,6 +997,7 @@ _activation = {
|
|||
'fast_gelu': FastGelu,
|
||||
'elu': ELU,
|
||||
'sigmoid': Sigmoid,
|
||||
'softsign': Softsign,
|
||||
'prelu': PReLU,
|
||||
'leakyrelu': LeakyReLU,
|
||||
'hswish': HSwish,
|
||||
|
|
|
@ -433,7 +433,7 @@ class Softsign(Primitive):
|
|||
|
||||
.. math::
|
||||
|
||||
\text{SoftSign}(x) = \frac{x}{ 1 + |x|}
|
||||
\text{SoftSign}(x) = \frac{x}{1 + |x|}
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Tensor of shape :math:`(N, *)`, where :math:`*` means, any number of
|
||||
|
|
|
@ -105,3 +105,23 @@ def test_compile_leaky_relu():
|
|||
net = NetLeakyReLU(alpha=0.1)
|
||||
input_data = Tensor(np.array([[1.6, 0, 0.6], [6, 0, -6]], dtype=np.float32))
|
||||
_cell_graph_executor.compile(net, input_data)
|
||||
|
||||
|
||||
class NetSoftsign(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSoftsign, self).__init__()
|
||||
self.softsign = nn.Softsign()
|
||||
|
||||
def construct(self, x):
|
||||
return self.softsign(x)
|
||||
|
||||
|
||||
def test_compile_softsign():
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for Softsign
|
||||
Expectation: no exception
|
||||
"""
|
||||
net = NetSoftsign()
|
||||
x = np.array([0, -1, 2, 30, -30], dtype=np.float32)
|
||||
_cell_graph_executor.compile(net, Tensor(x))
|
||||
|
|
Loading…
Reference in New Issue