forked from mindspore-Ecosystem/mindspore
add transformer hub_conf
This commit is contained in:
parent
4cdd93eb12
commit
9e69f9fac0
|
@ -0,0 +1,48 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
'''
|
||||||
|
Transformer hub interface for transformer large
|
||||||
|
'''
|
||||||
|
from src.transformer_model import TransformerModel
|
||||||
|
from src.transformer_model import TransformerConfig
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
transformer_net_cfg_large = TransformerConfig(
|
||||||
|
batch_size=96,
|
||||||
|
seq_length=128,
|
||||||
|
vocab_size=36560,
|
||||||
|
hidden_size=1024,
|
||||||
|
num_hidden_layers=6,
|
||||||
|
num_attention_heads=16,
|
||||||
|
intermediate_size=4096,
|
||||||
|
hidden_act="relu",
|
||||||
|
hidden_dropout_prob=0.2,
|
||||||
|
attention_probs_dropout_prob=0.2,
|
||||||
|
max_position_embeddings=128,
|
||||||
|
initializer_range=0.02,
|
||||||
|
label_smoothing=0.1,
|
||||||
|
input_mask_from_dataset=True,
|
||||||
|
dtype=mstype.float32,
|
||||||
|
compute_type=mstype.float16
|
||||||
|
)
|
||||||
|
def create_network(name, *args, **kwargs):
|
||||||
|
'''
|
||||||
|
Create transformer network for large.
|
||||||
|
'''
|
||||||
|
if name == 'transformer_large':
|
||||||
|
if "seq_length" in kwargs:
|
||||||
|
transformer_net_cfg_large.seq_length = kwargs["seq_length"]
|
||||||
|
is_training = kwargs.get("is_training", False)
|
||||||
|
return TransformerModel(transformer_net_cfg_large, is_training, *args)
|
||||||
|
raise NotImplementedError(f"{name} is not implemented in the repo")
|
Loading…
Reference in New Issue