diff --git a/mindspore/profiler/parser/framework_parser.py b/mindspore/profiler/parser/framework_parser.py index a99d82653b6..31560c08fe1 100644 --- a/mindspore/profiler/parser/framework_parser.py +++ b/mindspore/profiler/parser/framework_parser.py @@ -30,23 +30,24 @@ from mindspore.profiler.common.validator.validate_path import \ class VmDataType(enum.IntEnum): """Definition of vm data type.""" - NUMBER_TYPE_BEGIN = 26 - NUMBER_TYPE_BOOL = 27 - NUMBER_TYPE_INT = 28 - NUMBER_TYPE_INT8 = 29 - NUMBER_TYPE_INT16 = 30 - NUMBER_TYPE_INT32 = 31 - NUMBER_TYPE_INT64 = 32 - NUMBER_TYPE_UINT = 33 - NUMBER_TYPE_UINT8 = 34 - NUMBER_TYPE_UINT16 = 35 - NUMBER_TYPE_UINT32 = 36 - NUMBER_TYPE_UINT64 = 37 - NUMBER_TYPE_FLOAT = 38 - NUMBER_TYPE_FLOAT16 = 39 - NUMBER_TYPE_FLOAT32 = 40 - NUMBER_TYPE_FLOAT64 = 41 - NUMBER_TYPE_END = 42 + NUMBER_TYPE_BEGIN = 30 + NUMBER_TYPE_BOOL = 31 + NUMBER_TYPE_INT = 32 + NUMBER_TYPE_INT8 = 33 + NUMBER_TYPE_INT16 = 34 + NUMBER_TYPE_INT32 = 35 + NUMBER_TYPE_INT64 = 36 + NUMBER_TYPE_UINT = 37 + NUMBER_TYPE_UINT8 = 38 + NUMBER_TYPE_UINT16 = 39 + NUMBER_TYPE_UINT32 = 40 + NUMBER_TYPE_UINT64 = 41 + NUMBER_TYPE_FLOAT = 42 + NUMBER_TYPE_FLOAT16 = 43 + NUMBER_TYPE_FLOAT32 = 44 + NUMBER_TYPE_FLOAT64 = 45 + NUMBER_TYPE_COMPLEX = 46 + NUMBER_TYPE_END = 47 @classmethod def get_data_type_name(cls, num): diff --git a/tests/ut/data/profiler_data/profiler/framework_raw_0.csv b/tests/ut/data/profiler_data/profiler/framework_raw_0.csv index 762bc693469..8e34e5445d6 100755 --- a/tests/ut/data/profiler_data/profiler/framework_raw_0.csv +++ b/tests/ut/data/profiler_data/profiler/framework_raw_0.csv @@ -1,5 +1,5 @@ task_id,stream_id,block_dim,full_op_name,op_name,op_type,subgraph,op_info -51517,0,32,Default/Cast-op6,Cast-op6,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""32,3,224,224""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,3,224,224""}}" -51518,0,32,Default/TransData-op7,TransData-op7,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,3,224,224""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""32,1,224,224,16""}}" -51519,0,32,Default/network-WithLossCell/_backbone-ResNet/conv1-Conv2d/Cast-op5,Cast-op5,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""49,4,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""49,4,16,16""}}" -51522,0,4,Default/network-WithLossCell/_backbone-ResNet/layer1-SequentialCell/0-ResidualBlock/conv1-Conv2d/Cast-op28,Cast-op28,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_FLOAT32"", ""shape"": ""4,4,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_FLOAT16"", ""shape"": ""4,4,16,16""}}" +51517,0,32,Default/Cast-op6,Cast-op6,Cast,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT32"", ""shape"": ""32,3,224,224""}, ""output_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT16"", ""shape"": ""32,3,224,224""}}" +51518,0,32,Default/TransData-op7,TransData-op7,TransData,Default,"{""input_0"": {""format"": ""DefaultFormat"", ""data_type"": ""NUMBER_TYPE_UINT16"", ""shape"": ""32,3,224,224""}, ""output_0"": {""format"": ""NC1HWC0"", ""data_type"": ""NUMBER_TYPE_UINT16"", ""shape"": ""32,1,224,224,16""}}" +51519,0,32,Default/network-WithLossCell/_backbone-ResNet/conv1-Conv2d/Cast-op5,Cast-op5,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_UINT32"", ""shape"": ""49,4,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_UINT16"", ""shape"": ""49,4,16,16""}}" +51522,0,4,Default/network-WithLossCell/_backbone-ResNet/layer1-SequentialCell/0-ResidualBlock/conv1-Conv2d/Cast-op28,Cast-op28,Cast,Default,"{""input_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_UINT32"", ""shape"": ""4,4,16,16""}, ""output_0"": {""format"": ""FracZ"", ""data_type"": ""NUMBER_TYPE_UINT16"", ""shape"": ""4,4,16,16""}}"