forked from mindspore-Ecosystem/mindspore
!7397 add repeated calculation num as the last dimension of dev matrix
Merge pull request !7397 from yangzhenzhang/handle_repeated_calc
This commit is contained in:
commit
9d24e2b83b
|
@ -350,7 +350,8 @@ Status GatherV2PInfo::InferDevMatrixShape() {
|
|||
auto param_product = std::accumulate(param_strategy.begin(), param_strategy.end(), 1, std::multiplies<int>());
|
||||
auto index_product = std::accumulate(index_strategy.begin(), index_strategy.end(), 1, std::multiplies<int>());
|
||||
if (param_product * index_product < SizeToInt(dev_num)) {
|
||||
out_dev_matrix_shape_.insert(out_dev_matrix_shape_.begin(), SizeToInt(dev_num / (param_product * index_product)));
|
||||
// add the repeated calculation num to the last dimension of dev matrix
|
||||
out_dev_matrix_shape_.push_back(SizeToInt(dev_num / (param_product * index_product)));
|
||||
}
|
||||
|
||||
return SUCCESS;
|
||||
|
|
|
@ -73,6 +73,7 @@ Status OneHotInfo::InferDevMatrixShape() {
|
|||
dev_matrix_shape_.push_back(input_strategy[0]); // the features is splittable
|
||||
dev_matrix_shape_.push_back(input_strategy[1]); // the depth is un-splittable
|
||||
}
|
||||
old_dev_matrix_back_ = dev_matrix_shape_.back();
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
@ -134,7 +135,7 @@ Status OneHotInfo::InferTensorInfo() {
|
|||
Status OneHotInfo::ExtractInputInfo() {
|
||||
CheckGlobalDeviceManager();
|
||||
rank_ = g_device_manager->global_rank();
|
||||
mod_rank_ = rank_ % dev_matrix_shape_.back();
|
||||
mod_rank_ = rank_ % old_dev_matrix_back_;
|
||||
if (!cnode_) {
|
||||
MS_LOG(ERROR) << "Failure:OneHot cnode_ is nullptr";
|
||||
return FAILED;
|
||||
|
@ -162,13 +163,13 @@ Status OneHotInfo::ExtractInputInfo() {
|
|||
MS_LOG(ERROR) << "OneHot Primitive depth type must be int";
|
||||
return FAILED;
|
||||
}
|
||||
classes_each_device_ = total_class_number_ / dev_matrix_shape_.back();
|
||||
classes_each_device_ = total_class_number_ / old_dev_matrix_back_;
|
||||
|
||||
return SUCCESS;
|
||||
}
|
||||
|
||||
Status OneHotInfo::ComputeReplaceGraph(const CNodePtr &cnode) {
|
||||
if (dev_matrix_shape_.back() == 1) {
|
||||
if (old_dev_matrix_back_ == 1) {
|
||||
replace_graph_ = nullptr;
|
||||
return SUCCESS;
|
||||
}
|
||||
|
|
|
@ -60,6 +60,7 @@ class OneHotInfo : public OperatorInfo {
|
|||
int32_t rank_ = 0;
|
||||
int32_t total_class_number_ = 1;
|
||||
int32_t classes_each_device_ = 1;
|
||||
int32_t old_dev_matrix_back_ = 1;
|
||||
ValuePtr axis_value_ptr_;
|
||||
int32_t mod_rank_ = 0;
|
||||
};
|
||||
|
|
|
@ -164,14 +164,42 @@ Status OperatorInfo::InferRepeatedCalcInfo() {
|
|||
return SUCCESS;
|
||||
}
|
||||
|
||||
// if repeated calculation, need to set the repeated_calc_num as the first dimension of dev-matrix,
|
||||
// only use for infer tensor layout
|
||||
// If repeated calculation, need to set the repeated_calc_num as the last dimension of dev-matrix,
|
||||
// only use for infer tensor layout. Because if the previous shard is (a, b), and the next shard is
|
||||
// (a, 1), adding the repeated_calc_num to the last dimension of dev-matrix, there is no need to redistribution.
|
||||
void OperatorInfo::SetRepeatedCalcDevMatrix() {
|
||||
if (repeated_calc_num_ <= 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
(void)dev_matrix_shape_.insert(dev_matrix_shape_.begin(), repeated_calc_num_);
|
||||
(void)dev_matrix_shape_.push_back(repeated_calc_num_);
|
||||
}
|
||||
|
||||
// If repeated calculation, since the repeated_calc_num is added to the last dimension of the dev-matrix,
|
||||
// the index value of tensor map needs to be increased by 1.
|
||||
void OperatorInfo::ResetTensorMapIfRepeatedCalc() {
|
||||
if (repeated_calc_num_ <= 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
MS_LOG(DEBUG) << name_ << ": the repeated calc num is " << repeated_calc_num_ << ", and reset the tensor maps";
|
||||
for (auto &tensor_map : inputs_tensor_map_) {
|
||||
for (auto &element : tensor_map) {
|
||||
if (element == MAP_NONE) {
|
||||
continue;
|
||||
}
|
||||
element += 1;
|
||||
}
|
||||
}
|
||||
|
||||
for (auto &tensor_map : outputs_tensor_map_) {
|
||||
for (auto &element : tensor_map) {
|
||||
if (element == MAP_NONE) {
|
||||
continue;
|
||||
}
|
||||
element += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// use for loss repeated calculation
|
||||
|
@ -454,7 +482,7 @@ Status OperatorInfo::InitForCostModelWithAutoRepeatCalc(const StrategyPtr &strat
|
|||
return FAILED;
|
||||
}
|
||||
|
||||
// if repeated calculation, need to set the repeated_calc_num as the first dimension of dev-matrix for layout
|
||||
// if repeated calculation, need to set the repeated_calc_num as the last dimension of dev-matrix for layout
|
||||
SetRepeatedCalcDevMatrix();
|
||||
|
||||
if (InferTensorMap() != SUCCESS) {
|
||||
|
@ -462,6 +490,8 @@ Status OperatorInfo::InitForCostModelWithAutoRepeatCalc(const StrategyPtr &strat
|
|||
return FAILED;
|
||||
}
|
||||
|
||||
ResetTensorMapIfRepeatedCalc();
|
||||
|
||||
if (InferTensorInfo() != SUCCESS) {
|
||||
MS_LOG(ERROR) << name_ << ": InferTensorInfo failed.";
|
||||
return FAILED;
|
||||
|
|
|
@ -184,6 +184,7 @@ class OperatorInfo {
|
|||
Status CheckStrategyValue(const StrategyPtr &strategy, const Shapes &inputs_shape);
|
||||
void SetDeviceListByStrategy();
|
||||
void SetRepeatedCalcDevMatrix();
|
||||
void ResetTensorMapIfRepeatedCalc();
|
||||
Status CreateGroupByDim(size_t axis, std::vector<Group> *group);
|
||||
Status InferAttrs();
|
||||
void ResetQueueMember();
|
||||
|
|
|
@ -83,7 +83,7 @@ TEST_F(TestOneHotInfo, InferDevMatrixShape2) {
|
|||
ASSERT_EQ(status, SUCCESS);
|
||||
Shape dev_matrix_shape = onehot_info->dev_matrix_shape();
|
||||
|
||||
Shape expect = {2, 4, 1};
|
||||
Shape expect = {4, 1, 2};
|
||||
ASSERT_EQ(dev_matrix_shape, expect);
|
||||
}
|
||||
|
||||
|
|
|
@ -83,7 +83,7 @@ TEST_F(TestOneHotInfo2, InferDevMatrixShape2) {
|
|||
ASSERT_EQ(status, SUCCESS);
|
||||
Shape dev_matrix_shape = onehot_info2->dev_matrix_shape();
|
||||
|
||||
Shape expect = {2, 4, 1};
|
||||
Shape expect = {4, 1, 2};
|
||||
ASSERT_EQ(dev_matrix_shape, expect);
|
||||
}
|
||||
|
||||
|
|
|
@ -70,7 +70,7 @@ TEST_F(TestPReLUInfo, InferDevMatrixShape1) {
|
|||
prelu->Init(strategy);
|
||||
Shape dev_matrix_shape = prelu->dev_matrix_shape();
|
||||
|
||||
Shape expect = {4, 2, 1, 8, 16};
|
||||
Shape expect = {2, 1, 8, 16, 4};
|
||||
ASSERT_EQ(dev_matrix_shape, expect);
|
||||
}
|
||||
|
||||
|
@ -105,9 +105,9 @@ TEST_F(TestPReLUInfo, GetTensorLayout1) {
|
|||
std::vector<TensorInfo> inputs = prelu->inputs_tensor_info();
|
||||
std::vector<TensorInfo> outputs = prelu->outputs_tensor_info();
|
||||
|
||||
TensorMap input_expect = {3, 2, 1, 0};
|
||||
TensorMap input_expect = {4, 3, 2, 1};
|
||||
TensorMap param_expect = {2};
|
||||
TensorMap output_expect = {3, 2, 1, 0};
|
||||
TensorMap output_expect = {4, 3, 2, 1};
|
||||
|
||||
TensorInfo input_tensor_info = inputs.at(0);
|
||||
TensorInfo param_tensor_info = inputs.at(1);
|
||||
|
@ -175,7 +175,7 @@ TEST_F(TestPReLUInfo, InferDevMatrixShape_2d1) {
|
|||
prelu_2d->Init(strategy);
|
||||
Shape dev_matrix_shape = prelu_2d->dev_matrix_shape();
|
||||
|
||||
Shape expect = {8, 128, 1};
|
||||
Shape expect = {128, 1, 8};
|
||||
ASSERT_EQ(dev_matrix_shape, expect);
|
||||
}
|
||||
|
||||
|
@ -210,9 +210,9 @@ TEST_F(TestPReLUInfo, GetTensorLayout_2d1) {
|
|||
std::vector<TensorInfo> inputs = prelu_2d->inputs_tensor_info();
|
||||
std::vector<TensorInfo> outputs = prelu_2d->outputs_tensor_info();
|
||||
|
||||
TensorMap input_expect = {1, 0};
|
||||
TensorMap input_expect = {2, 1};
|
||||
TensorMap param_expect = {0};
|
||||
TensorMap output_expect = {1, 0};
|
||||
TensorMap output_expect = {2, 1};
|
||||
|
||||
TensorInfo input_tensor_info = inputs.at(0);
|
||||
TensorInfo param_tensor_info = inputs.at(1);
|
||||
|
|
|
@ -74,7 +74,7 @@ TEST_F(TestReshapeInfo, InferDevMatrixShape1) {
|
|||
reshape->Init(strategy);
|
||||
Shape dev_matrix_shape = reshape->dev_matrix_shape();
|
||||
|
||||
Shape expect = {8, 4};
|
||||
Shape expect = {4, 8};
|
||||
ASSERT_EQ(dev_matrix_shape, expect);
|
||||
}
|
||||
|
||||
|
@ -139,8 +139,8 @@ TEST_F(TestReshapeInfo, GetTensorLayout1) {
|
|||
std::vector<TensorInfo> inputs = reshape->inputs_tensor_info();
|
||||
std::vector<TensorInfo> outputs = reshape->outputs_tensor_info();
|
||||
|
||||
TensorMap input_expect = {0, -1, -1, -1};
|
||||
TensorMap output_expect = {0, -1};
|
||||
TensorMap input_expect = {1, -1, -1, -1};
|
||||
TensorMap output_expect = {1, -1};
|
||||
|
||||
TensorInfo input_tensor_info = inputs.at(0);
|
||||
TensorInfo output_tensor_info = outputs.at(0);
|
||||
|
|
|
@ -85,7 +85,7 @@ TEST_F(TestTransposeInfo, InferDevMatrixShape2) {
|
|||
transpose->Init(strategy);
|
||||
Shape dev_matrix_shape = transpose->dev_matrix_shape();
|
||||
|
||||
Shape expect = {8, 4, 1};
|
||||
Shape expect = {4, 1, 8};
|
||||
ASSERT_EQ(dev_matrix_shape, expect);
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,107 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
predict = self.network(x, y, b)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x, y, b):
|
||||
return grad_all(self.network)(x, y, b)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
# it has not redistribution
|
||||
def test_tensoradd_reshape_matmul():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy2):
|
||||
super().__init__()
|
||||
self.add = P.TensorAdd().shard(strategy1)
|
||||
self.reshape = P.Reshape()
|
||||
self.matmul = P.MatMul().shard(strategy2)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
out = self.add(x, y)
|
||||
out = self.reshape(out, (256, 16))
|
||||
out = self.matmul(out, b)
|
||||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=64, global_rank=0, gradients_mean=True)
|
||||
strategy1 = ((8, 1, 1), (8, 1, 1))
|
||||
strategy2 = ((8, 1), (1, 8))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
context.set_context(save_graphs=True)
|
||||
|
||||
x = Tensor(np.ones([32, 8, 16]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 8, 16]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([16, 16]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x, y, b)
|
||||
|
||||
|
||||
def test_two_matmul():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy2):
|
||||
super().__init__()
|
||||
self.matmul1 = P.MatMul().shard(strategy1)
|
||||
self.matmul2 = P.MatMul().shard(strategy2)
|
||||
|
||||
def construct(self, x, y, b):
|
||||
out = self.matmul1(x, y)
|
||||
out = self.matmul2(out, b)
|
||||
return out
|
||||
|
||||
context.set_auto_parallel_context(device_num=64, global_rank=0, gradients_mean=True)
|
||||
strategy1 = ((8, 8), (8, 1))
|
||||
strategy2 = ((8, 1), (1, 1))
|
||||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
context.set_context(save_graphs=True)
|
||||
|
||||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x, y, b)
|
Loading…
Reference in New Issue