cpu unique kernel support fp16

This commit is contained in:
kswang 2021-04-19 10:47:13 +08:00
parent 91a21f9477
commit 9c8ada03fe
7 changed files with 41 additions and 14 deletions

View File

@ -57,6 +57,7 @@ const char GROUP[] = "group";
const char START[] = "start";
const char LIMIT[] = "limit";
const char DELTA[] = "delta";
const char SORTED[] = "sorted";
enum OperateType {
ADD = 0,

View File

@ -19,13 +19,16 @@
namespace mindspore {
namespace kernel {
const size_t kUseBucketUniqueSize = 100000;
constexpr size_t kBucketSortThreshold = 100000;
void UniqueCPUKernel::InitKernel(const CNodePtr &kernel_node) {
node_wpt_ = kernel_node;
CheckParam(kernel_node);
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
input_size_ = input_shape[0];
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
if (AnfAlgo::HasNodeAttr(SORTED, kernel_node)) {
sorted_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, SORTED);
}
}
void UniqueCPUKernel::InitInputOutputSize(const CNodePtr &kernel_node) {
@ -41,9 +44,11 @@ bool UniqueCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
if (dtype_ == kNumberTypeInt32) {
LaunchKernel<int, int>(inputs, workspace, outputs);
} else if (dtype_ == kNumberTypeInt64) {
LaunchKernel<int64_t, int>(inputs, workspace, outputs);
} else if (dtype_ == kNumberTypeFloat32) {
LaunchKernel<int64_t, int64_t>(inputs, workspace, outputs);
} else if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat16) {
LaunchKernel<float, int>(inputs, workspace, outputs);
} else {
MS_LOG(EXCEPTION) << "Not support type: " << dtype_;
}
if (!node_wpt_.expired()) {
auto node_ = node_wpt_.lock();
@ -86,13 +91,19 @@ void UniqueCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const
params->inverse_idx_ = reinterpret_cast<IndexType *>(outputs[1]->addr);
params->input_size_ = input_size_;
params->output_size_ = 0;
params->need_sort_ = true;
params->thread_num_ = common::ThreadPool::GetInstance().GetSyncRunThreadNum();
if (input_size_ < kUseBucketUniqueSize) {
if (sorted_) {
params->need_sort_ = true;
if (input_size_ < kBucketSortThreshold) {
Unique(params);
} else {
BucketUnique(params);
}
} else {
params->need_sort_ = false;
Unique(params);
}
output_size_ = params->output_size_;
}

View File

@ -60,6 +60,7 @@ class UniqueCPUKernel : public CPUKernel {
size_t input_size_{0};
TypeId dtype_{kTypeUnknown};
size_t output_size_{0};
bool sorted_{false};
CNodeWeakPtr node_wpt_;
template <typename DataType>
@ -378,7 +379,7 @@ MS_REG_CPU_KERNEL(
UniqueCPUKernel);
MS_REG_CPU_KERNEL(
Unique, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
Unique, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
UniqueCPUKernel);
MS_REG_CPU_KERNEL(

View File

@ -26,11 +26,13 @@ bool UniqueWithPadCPUKernel::Launch(const std::vector<kernel::AddressPtr> &input
UniqueCPUKernel::LaunchKernel<int, int>(inputs, workspace, outputs);
PadOutput<int>(inputs, outputs);
} else if (dtype_ == kNumberTypeInt64) {
UniqueCPUKernel::LaunchKernel<int64_t, int>(inputs, workspace, outputs);
UniqueCPUKernel::LaunchKernel<int64_t, int64_t>(inputs, workspace, outputs);
PadOutput<int64_t>(inputs, outputs);
} else if (dtype_ == kNumberTypeFloat32) {
} else if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat16) {
UniqueCPUKernel::LaunchKernel<float, int>(inputs, workspace, outputs);
PadOutput<float>(inputs, outputs);
} else {
MS_LOG(EXCEPTION) << "Not support data type: " << dtype_;
}
return true;
}

View File

@ -51,7 +51,7 @@ MS_REG_CPU_KERNEL(UniqueWithPad,
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt32),
.AddOutputAttr(kNumberTypeInt64),
UniqueWithPadCPUKernel);
MS_REG_CPU_KERNEL(UniqueWithPad,

View File

@ -46,6 +46,18 @@ def test_net_fp32():
assert (output[0].asnumpy() == expect_y_result).all()
assert (output[1].asnumpy() == expect_idx_result).all()
def test_net_fp16():
x = Tensor(np.array([1, 5, 2, 2]), mstype.float16)
uniq = Net()
output = uniq(x)
print("x:\n", x)
print("y:\n", output[0])
print("idx:\n", output[1])
expect_y_result = [1., 5., 2.]
expect_idx_result = [0, 1, 2, 2]
assert (output[0].asnumpy() == expect_y_result).all()
assert (output[1].asnumpy() == expect_idx_result).all()
def test_net_int32():
x = Tensor(np.array([1, 2, 5, 2]), mstype.int32)

View File

@ -55,7 +55,7 @@ class UniqueWithPadCpuKernelTest : public UT::Common {
std::vector<int64_t> x_;
int64_t pad_dim_;
std::vector<int64_t> out_;
std::vector<int> idx_;
std::vector<int64_t> idx_;
std::vector<int64_t> workspace_idx_;
std::vector<AddressPtr> inputs_;
std::vector<AddressPtr> workspace_;
@ -73,8 +73,8 @@ TEST_F(UniqueWithPadCpuKernelTest, compute_test) {
unique_with_pad_->Launch(inputs_, workspace_, outputs_);
// check compute result
std::vector<int64_t> expect_out{1, 2, 3, 4, 5, 8, 8, 8, 8, 8};
std::vector<int> expect_idx{0, 0, 4, 4, 3, 3, 2, 2, 1, 1};
std::vector<int64_t> expect_out{1, 5, 4, 3, 2, 8, 8, 8, 8, 8};
std::vector<int64_t> expect_idx{0, 0, 1, 1, 2, 2, 3, 3, 4, 4};
EXPECT_TRUE(out_ == expect_out);
EXPECT_TRUE(idx_ == expect_idx);
}