forked from mindspore-Ecosystem/mindspore
commit
9bc2ffde54
|
@ -1044,6 +1044,6 @@ def get_bprop_inv(self):
|
|||
inv_grad = G.InvGrad()
|
||||
|
||||
def bprop(x, out, dout):
|
||||
dx = inv_grad(x, dout)
|
||||
dx = inv_grad(out, dout)
|
||||
return (dx,)
|
||||
return bprop
|
||||
|
|
|
@ -2649,7 +2649,7 @@ class BatchToSpaceND(PrimitiveWithInfer):
|
|||
The length of block_shape is M correspoding to the number of spatial dimensions.
|
||||
crops (list): The crop value for H and W dimension, containing 2 sub list, each containing 2 int value.
|
||||
All values must be >= 0. crops[i] specifies the crop values for spatial dimension i, which corresponds to
|
||||
input dimension i+2. It is required that input_shape[i+2]*block_size[i] >= crops[i][0]+crops[i][1].
|
||||
input dimension i+2. It is required that input_shape[i+2]*block_size[i] > crops[i][0]+crops[i][1].
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - The input tensor.
|
||||
|
|
|
@ -228,20 +228,20 @@ class IOU(PrimitiveWithInfer):
|
|||
|
||||
Inputs:
|
||||
- **anchor_boxes** (Tensor) - Anchor boxes, tensor of shape (N, 4). "N" indicates the number of anchor boxes,
|
||||
and the value "4" refers to "x0", "x1", "y0", and "y1".
|
||||
and the value "4" refers to "x0", "x1", "y0", and "y1". Data type must be float16.
|
||||
- **gt_boxes** (Tensor) - Ground truth boxes, tensor of shape (M, 4). "M" indicates the number of ground
|
||||
truth boxes, and the value "4" refers to "x0", "x1", "y0", and "y1".
|
||||
truth boxes, and the value "4" refers to "x0", "x1", "y0", and "y1". Data type must be float16.
|
||||
|
||||
Outputs:
|
||||
Tensor, the 'iou' values, tensor of shape (M, N).
|
||||
Tensor, the 'iou' values, tensor of shape (M, N), with data type float16.
|
||||
|
||||
Raises:
|
||||
KeyError: When `mode` is not 'iou' or 'iof'.
|
||||
|
||||
Examples:
|
||||
>>> iou = P.IOU()
|
||||
>>> anchor_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float32)
|
||||
>>> gt_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float32)
|
||||
>>> anchor_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16)
|
||||
>>> gt_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16)
|
||||
>>> iou(anchor_boxes, gt_boxes)
|
||||
"""
|
||||
|
||||
|
|
Loading…
Reference in New Issue