!4314 [MD] remove defaults used in binding code, and remove bilinear resize op

Merge pull request !4314 from nhussain/clean_up_bindings
This commit is contained in:
mindspore-ci-bot 2020-08-20 22:16:56 +08:00 committed by Gitee
commit 9a3baf4f6c
12 changed files with 179 additions and 409 deletions

View File

@ -32,45 +32,37 @@ namespace mindspore {
namespace dataset {
PYBIND_REGISTER(ConcatenateOp, 1, ([](const py::module *m) {
(void)py::class_<ConcatenateOp, TensorOp, std::shared_ptr<ConcatenateOp>>(
*m, "ConcatenateOp", "Tensor operation concatenate tensors.")
.def(py::init<int8_t, std::shared_ptr<Tensor>, std::shared_ptr<Tensor>>(), py::arg("axis"),
py::arg("prepend").none(true), py::arg("append").none(true));
(void)py::class_<ConcatenateOp, TensorOp, std::shared_ptr<ConcatenateOp>>(*m, "ConcatenateOp")
.def(py::init<int8_t, std::shared_ptr<Tensor>, std::shared_ptr<Tensor>>());
}));
PYBIND_REGISTER(DuplicateOp, 1, ([](const py::module *m) {
(void)py::class_<DuplicateOp, TensorOp, std::shared_ptr<DuplicateOp>>(*m, "DuplicateOp",
"Duplicate tensor.")
.def(py::init<>());
}));
PYBIND_REGISTER(
DuplicateOp, 1, ([](const py::module *m) {
(void)py::class_<DuplicateOp, TensorOp, std::shared_ptr<DuplicateOp>>(*m, "DuplicateOp").def(py::init<>());
}));
PYBIND_REGISTER(FillOp, 1, ([](const py::module *m) {
(void)py::class_<FillOp, TensorOp, std::shared_ptr<FillOp>>(
*m, "FillOp", "Tensor operation to return tensor filled with same value as input fill value.")
.def(py::init<std::shared_ptr<Tensor>>());
}));
PYBIND_REGISTER(
FillOp, 1, ([](const py::module *m) {
(void)py::class_<FillOp, TensorOp, std::shared_ptr<FillOp>>(*m, "FillOp").def(py::init<std::shared_ptr<Tensor>>());
}));
PYBIND_REGISTER(MaskOp, 1, ([](const py::module *m) {
(void)py::class_<MaskOp, TensorOp, std::shared_ptr<MaskOp>>(
*m, "MaskOp", "Tensor mask operation using relational comparator")
(void)py::class_<MaskOp, TensorOp, std::shared_ptr<MaskOp>>(*m, "MaskOp")
.def(py::init<RelationalOp, std::shared_ptr<Tensor>, DataType>());
}));
PYBIND_REGISTER(OneHotOp, 1, ([](const py::module *m) {
(void)py::class_<OneHotOp, TensorOp, std::shared_ptr<OneHotOp>>(
*m, "OneHotOp", "Tensor operation to apply one hot encoding. Takes number of classes.")
.def(py::init<int32_t>());
}));
PYBIND_REGISTER(
OneHotOp, 1, ([](const py::module *m) {
(void)py::class_<OneHotOp, TensorOp, std::shared_ptr<OneHotOp>>(*m, "OneHotOp").def(py::init<int32_t>());
}));
PYBIND_REGISTER(PadEndOp, 1, ([](const py::module *m) {
(void)py::class_<PadEndOp, TensorOp, std::shared_ptr<PadEndOp>>(
*m, "PadEndOp", "Tensor operation to pad end of tensor with a pad value.")
(void)py::class_<PadEndOp, TensorOp, std::shared_ptr<PadEndOp>>(*m, "PadEndOp")
.def(py::init<TensorShape, std::shared_ptr<Tensor>>());
}));
PYBIND_REGISTER(SliceOp, 1, ([](const py::module *m) {
(void)py::class_<SliceOp, TensorOp, std::shared_ptr<SliceOp>>(*m, "SliceOp",
"Tensor slice operation.")
(void)py::class_<SliceOp, TensorOp, std::shared_ptr<SliceOp>>(*m, "SliceOp")
.def(py::init<bool>())
.def(py::init([](const py::list &py_list) {
std::vector<dsize_t> c_list;
@ -105,17 +97,15 @@ PYBIND_REGISTER(SliceOp, 1, ([](const py::module *m) {
}));
PYBIND_REGISTER(ToFloat16Op, 1, ([](const py::module *m) {
(void)py::class_<ToFloat16Op, TensorOp, std::shared_ptr<ToFloat16Op>>(
*m, "ToFloat16Op", py::dynamic_attr(),
"Tensor operator to type cast float32 data to a float16 type.")
(void)py::class_<ToFloat16Op, TensorOp, std::shared_ptr<ToFloat16Op>>(*m, "ToFloat16Op",
py::dynamic_attr())
.def(py::init<>());
}));
PYBIND_REGISTER(TypeCastOp, 1, ([](const py::module *m) {
(void)py::class_<TypeCastOp, TensorOp, std::shared_ptr<TypeCastOp>>(
*m, "TypeCastOp", "Tensor operator to type cast data to a specified type.")
.def(py::init<DataType>(), py::arg("data_type"))
.def(py::init<std::string>(), py::arg("data_type"));
(void)py::class_<TypeCastOp, TensorOp, std::shared_ptr<TypeCastOp>>(*m, "TypeCastOp")
.def(py::init<DataType>())
.def(py::init<std::string>());
}));
PYBIND_REGISTER(RelationalOp, 0, ([](const py::module *m) {

View File

@ -52,7 +52,6 @@
#include "minddata/dataset/kernels/image/random_vertical_flip_op.h"
#include "minddata/dataset/kernels/image/random_vertical_flip_with_bbox_op.h"
#include "minddata/dataset/kernels/image/rescale_op.h"
#include "minddata/dataset/kernels/image/resize_bilinear_op.h"
#include "minddata/dataset/kernels/image/resize_op.h"
#include "minddata/dataset/kernels/image/resize_with_bbox_op.h"
#include "minddata/dataset/kernels/image/soft_dvpp/soft_dvpp_decode_random_crop_resize_jpeg_op.h"
@ -63,180 +62,133 @@ namespace mindspore {
namespace dataset {
PYBIND_REGISTER(AutoContrastOp, 1, ([](const py::module *m) {
(void)py::class_<AutoContrastOp, TensorOp, std::shared_ptr<AutoContrastOp>>(
*m, "AutoContrastOp", "Tensor operation to apply autocontrast on an image.")
.def(py::init<float, std::vector<uint32_t>>(), py::arg("cutoff") = AutoContrastOp::kCutOff,
py::arg("ignore") = AutoContrastOp::kIgnore);
(void)py::class_<AutoContrastOp, TensorOp, std::shared_ptr<AutoContrastOp>>(*m, "AutoContrastOp")
.def(py::init<float, std::vector<uint32_t>>());
}));
PYBIND_REGISTER(NormalizeOp, 1, ([](const py::module *m) {
(void)py::class_<NormalizeOp, TensorOp, std::shared_ptr<NormalizeOp>>(
*m, "NormalizeOp", "Tensor operation to normalize an image. Takes mean and std.")
.def(py::init<float, float, float, float, float, float>(), py::arg("meanR"), py::arg("meanG"),
py::arg("meanB"), py::arg("stdR"), py::arg("stdG"), py::arg("stdB"));
(void)py::class_<NormalizeOp, TensorOp, std::shared_ptr<NormalizeOp>>(*m, "NormalizeOp")
.def(py::init<float, float, float, float, float, float>());
}));
PYBIND_REGISTER(EqualizeOp, 1, ([](const py::module *m) {
(void)py::class_<EqualizeOp, TensorOp, std::shared_ptr<EqualizeOp>>(
*m, "EqualizeOp", "Tensor operation to apply histogram equalization on images.")
.def(py::init<>());
}));
PYBIND_REGISTER(
EqualizeOp, 1, ([](const py::module *m) {
(void)py::class_<EqualizeOp, TensorOp, std::shared_ptr<EqualizeOp>>(*m, "EqualizeOp").def(py::init<>());
}));
PYBIND_REGISTER(InvertOp, 1, ([](const py::module *m) {
(void)py::class_<InvertOp, TensorOp, std::shared_ptr<InvertOp>>(
*m, "InvertOp", "Tensor operation to apply invert on RGB images.")
.def(py::init<>());
(void)py::class_<InvertOp, TensorOp, std::shared_ptr<InvertOp>>(*m, "InvertOp").def(py::init<>());
}));
PYBIND_REGISTER(RescaleOp, 1, ([](const py::module *m) {
(void)py::class_<RescaleOp, TensorOp, std::shared_ptr<RescaleOp>>(
*m, "RescaleOp", "Tensor operation to rescale an image. Takes scale and shift.")
.def(py::init<float, float>(), py::arg("rescale"), py::arg("shift"));
}));
PYBIND_REGISTER(
RescaleOp, 1, ([](const py::module *m) {
(void)py::class_<RescaleOp, TensorOp, std::shared_ptr<RescaleOp>>(*m, "RescaleOp").def(py::init<float, float>());
}));
PYBIND_REGISTER(CenterCropOp, 1, ([](const py::module *m) {
(void)py::class_<CenterCropOp, TensorOp, std::shared_ptr<CenterCropOp>>(
*m, "CenterCropOp",
"Tensor operation to crop and image in the middle. Takes height and width (optional)")
.def(py::init<int32_t, int32_t>(), py::arg("height"), py::arg("width") = CenterCropOp::kDefWidth);
.def(py::init<int32_t, int32_t>());
}));
PYBIND_REGISTER(MixUpBatchOp, 1, ([](const py::module *m) {
(void)py::class_<MixUpBatchOp, TensorOp, std::shared_ptr<MixUpBatchOp>>(
*m, "MixUpBatchOp", "Tensor operation to mixup a batch of images")
.def(py::init<float>(), py::arg("alpha"));
}));
PYBIND_REGISTER(
MixUpBatchOp, 1, ([](const py::module *m) {
(void)py::class_<MixUpBatchOp, TensorOp, std::shared_ptr<MixUpBatchOp>>(*m, "MixUpBatchOp").def(py::init<float>());
}));
PYBIND_REGISTER(CutMixBatchOp, 1, ([](const py::module *m) {
(void)py::class_<CutMixBatchOp, TensorOp, std::shared_ptr<CutMixBatchOp>>(
*m, "CutMixBatchOp", "Tensor operation to cutmix a batch of images")
.def(py::init<ImageBatchFormat, float, float>(), py::arg("image_batch_format"), py::arg("alpha"),
py::arg("prob"));
.def(py::init<ImageBatchFormat, float, float>());
}));
PYBIND_REGISTER(ResizeOp, 1, ([](const py::module *m) {
(void)py::class_<ResizeOp, TensorOp, std::shared_ptr<ResizeOp>>(
*m, "ResizeOp", "Tensor operation to resize an image. Takes height, width and mode")
.def(py::init<int32_t, int32_t, InterpolationMode>(), py::arg("targetHeight"),
py::arg("targetWidth") = ResizeOp::kDefWidth,
py::arg("interpolation") = ResizeOp::kDefInterpolation);
(void)py::class_<ResizeOp, TensorOp, std::shared_ptr<ResizeOp>>(*m, "ResizeOp")
.def(py::init<int32_t, int32_t, InterpolationMode>());
}));
PYBIND_REGISTER(ResizeWithBBoxOp, 1, ([](const py::module *m) {
(void)py::class_<ResizeWithBBoxOp, TensorOp, std::shared_ptr<ResizeWithBBoxOp>>(
*m, "ResizeWithBBoxOp", "Tensor operation to resize an image. Takes height, width and mode.")
.def(py::init<int32_t, int32_t, InterpolationMode>(), py::arg("targetHeight"),
py::arg("targetWidth") = ResizeWithBBoxOp::kDefWidth,
py::arg("interpolation") = ResizeWithBBoxOp::kDefInterpolation);
(void)py::class_<ResizeWithBBoxOp, TensorOp, std::shared_ptr<ResizeWithBBoxOp>>(*m,
"ResizeWithBBoxOp")
.def(py::init<int32_t, int32_t, InterpolationMode>());
}));
//####
PYBIND_REGISTER(RandomAffineOp, 1, ([](const py::module *m) {
(void)py::class_<RandomAffineOp, TensorOp, std::shared_ptr<RandomAffineOp>>(
*m, "RandomAffineOp", "Tensor operation to apply random affine transformations on an image.")
.def(py::init<std::vector<float_t>, std::vector<float_t>, std::vector<float_t>,
std::vector<float_t>, InterpolationMode, std::vector<uint8_t>>(),
py::arg("degrees") = RandomAffineOp::kDegreesRange,
py::arg("translate_range") = RandomAffineOp::kTranslationPercentages,
py::arg("scale_range") = RandomAffineOp::kScaleRange,
py::arg("shear_ranges") = RandomAffineOp::kShearRanges,
py::arg("interpolation") = RandomAffineOp::kDefInterpolation,
py::arg("fill_value") = RandomAffineOp::kFillValue);
std::vector<float_t>, InterpolationMode, std::vector<uint8_t>>());
}));
PYBIND_REGISTER(RandomResizeWithBBoxOp, 1, ([](const py::module *m) {
(void)py::class_<RandomResizeWithBBoxOp, TensorOp, std::shared_ptr<RandomResizeWithBBoxOp>>(
*m, "RandomResizeWithBBoxOp")
.def(py::init<int32_t, int32_t>());
}));
PYBIND_REGISTER(RandomPosterizeOp, 1, ([](const py::module *m) {
(void)py::class_<RandomPosterizeOp, TensorOp, std::shared_ptr<RandomPosterizeOp>>(
*m, "RandomPosterizeOp", "Tensor operation to apply random posterize operation on an image.")
.def(py::init<uint8_t, uint8_t>(), py::arg("min_bit") = RandomPosterizeOp::kMinBit,
py::arg("max_bit") = RandomPosterizeOp::kMaxBit);
(void)py::class_<RandomPosterizeOp, TensorOp, std::shared_ptr<RandomPosterizeOp>>(*m,
"RandomPosterizeOp")
.def(py::init<uint8_t, uint8_t>());
}));
PYBIND_REGISTER(
RandomResizeWithBBoxOp, 1, ([](const py::module *m) {
(void)py::class_<RandomResizeWithBBoxOp, TensorOp, std::shared_ptr<RandomResizeWithBBoxOp>>(
*m, "RandomResizeWithBBoxOp",
"Tensor operation to resize an image using a randomly selected interpolation. Takes height and width.")
.def(py::init<int32_t, int32_t>(), py::arg("targetHeight"),
py::arg("targetWidth") = RandomResizeWithBBoxOp::kDefTargetWidth);
}));
PYBIND_REGISTER(UniformAugOp, 1, ([](const py::module *m) {
(void)py::class_<UniformAugOp, TensorOp, std::shared_ptr<UniformAugOp>>(
*m, "UniformAugOp", "Tensor operation to apply random augmentation(s).")
.def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("transforms"),
py::arg("NumOps") = UniformAugOp::kDefNumOps);
(void)py::class_<UniformAugOp, TensorOp, std::shared_ptr<UniformAugOp>>(*m, "UniformAugOp")
.def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>());
}));
PYBIND_REGISTER(BoundingBoxAugmentOp, 1, ([](const py::module *m) {
(void)py::class_<BoundingBoxAugmentOp, TensorOp, std::shared_ptr<BoundingBoxAugmentOp>>(
*m, "BoundingBoxAugmentOp",
"Tensor operation to apply a transformation on a random choice of bounding boxes.")
.def(py::init<std::shared_ptr<TensorOp>, float>(), py::arg("transform"),
py::arg("ratio") = BoundingBoxAugmentOp::kDefRatio);
}));
PYBIND_REGISTER(ResizeBilinearOp, 1, ([](const py::module *m) {
(void)py::class_<ResizeBilinearOp, TensorOp, std::shared_ptr<ResizeBilinearOp>>(
*m, "ResizeBilinearOp",
"Tensor operation to resize an image using "
"Bilinear mode. Takes height and width.")
.def(py::init<int32_t, int32_t>(), py::arg("targetHeight"),
py::arg("targetWidth") = ResizeBilinearOp::kDefWidth);
*m, "BoundingBoxAugmentOp")
.def(py::init<std::shared_ptr<TensorOp>, float>());
}));
PYBIND_REGISTER(DecodeOp, 1, ([](const py::module *m) {
(void)py::class_<DecodeOp, TensorOp, std::shared_ptr<DecodeOp>>(
*m, "DecodeOp", "Tensor operation to decode a jpg image")
(void)py::class_<DecodeOp, TensorOp, std::shared_ptr<DecodeOp>>(*m, "DecodeOp")
.def(py::init<>())
.def(py::init<bool>(), py::arg("rgb_format") = DecodeOp::kDefRgbFormat);
.def(py::init<bool>());
}));
PYBIND_REGISTER(RandomHorizontalFlipOp, 1, ([](const py::module *m) {
(void)py::class_<RandomHorizontalFlipOp, TensorOp, std::shared_ptr<RandomHorizontalFlipOp>>(
*m, "RandomHorizontalFlipOp", "Tensor operation to randomly flip an image horizontally.")
.def(py::init<float>(), py::arg("probability") = RandomHorizontalFlipOp::kDefProbability);
*m, "RandomHorizontalFlipOp")
.def(py::init<float>());
}));
PYBIND_REGISTER(
RandomHorizontalFlipWithBBoxOp, 1, ([](const py::module *m) {
(void)py::class_<RandomHorizontalFlipWithBBoxOp, TensorOp, std::shared_ptr<RandomHorizontalFlipWithBBoxOp>>(
*m, "RandomHorizontalFlipWithBBoxOp",
"Tensor operation to randomly flip an image horizontally, while flipping bounding boxes.")
.def(py::init<float>(), py::arg("probability") = RandomHorizontalFlipWithBBoxOp::kDefProbability);
*m, "RandomHorizontalFlipWithBBoxOp")
.def(py::init<float>());
}));
PYBIND_REGISTER(RandomVerticalFlipOp, 1, ([](const py::module *m) {
(void)py::class_<RandomVerticalFlipOp, TensorOp, std::shared_ptr<RandomVerticalFlipOp>>(
*m, "RandomVerticalFlipOp", "Tensor operation to randomly flip an image vertically.")
.def(py::init<float>(), py::arg("probability") = RandomVerticalFlipOp::kDefProbability);
*m, "RandomVerticalFlipOp")
.def(py::init<float>());
}));
PYBIND_REGISTER(RandomVerticalFlipWithBBoxOp, 1, ([](const py::module *m) {
(void)
py::class_<RandomVerticalFlipWithBBoxOp, TensorOp, std::shared_ptr<RandomVerticalFlipWithBBoxOp>>(
*m, "RandomVerticalFlipWithBBoxOp",
"Tensor operation to randomly flip an image vertically"
" and adjust bounding boxes.")
.def(py::init<float>(), py::arg("probability") = RandomVerticalFlipWithBBoxOp::kDefProbability);
*m, "RandomVerticalFlipWithBBoxOp")
.def(py::init<float>());
}));
PYBIND_REGISTER(
RandomCropOp, 1, ([](const py::module *m) {
(void)py::class_<RandomCropOp, TensorOp, std::shared_ptr<RandomCropOp>>(*m, "RandomCropOp",
"Gives random crop of specified size "
"Takes crop size")
(void)py::class_<RandomCropOp, TensorOp, std::shared_ptr<RandomCropOp>>(*m, "RandomCropOp")
.def(
py::init<int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, BorderType, bool, uint8_t, uint8_t, uint8_t>(),
py::arg("cropHeight"), py::arg("cropWidth"), py::arg("padTop") = RandomCropOp::kDefPadTop,
py::arg("padBottom") = RandomCropOp::kDefPadBottom, py::arg("padLeft") = RandomCropOp::kDefPadLeft,
py::arg("padRight") = RandomCropOp::kDefPadRight, py::arg("borderType") = RandomCropOp::kDefBorderType,
py::arg("padIfNeeded") = RandomCropOp::kDefPadIfNeeded, py::arg("fillR") = RandomCropOp::kDefFillR,
py::arg("fillG") = RandomCropOp::kDefFillG, py::arg("fillB") = RandomCropOp::kDefFillB);
py::init<int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, BorderType, bool, uint8_t, uint8_t, uint8_t>());
}));
PYBIND_REGISTER(
HwcToChwOp, 1, ([](const py::module *m) {
(void)py::class_<HwcToChwOp, TensorOp, std::shared_ptr<HwcToChwOp>>(*m, "ChannelSwapOp").def(py::init<>());
}));
PYBIND_REGISTER(
RandomCropWithBBoxOp, 1, ([](const py::module *m) {
(void)py::class_<RandomCropWithBBoxOp, TensorOp, std::shared_ptr<RandomCropWithBBoxOp>>(
*m, "RandomCropWithBBoxOp",
"Gives random crop of given "
"size + adjusts bboxes "
"Takes crop size")
(void)py::class_<RandomCropWithBBoxOp, TensorOp, std::shared_ptr<RandomCropWithBBoxOp>>(*m, "RandomCropWithBBoxOp")
.def(
py::init<int32_t, int32_t, int32_t, int32_t, int32_t, int32_t, BorderType, bool, uint8_t, uint8_t, uint8_t>(),
py::arg("cropHeight"), py::arg("cropWidth"), py::arg("padTop") = RandomCropWithBBoxOp::kDefPadTop,
@ -248,124 +200,64 @@ PYBIND_REGISTER(
py::arg("fillR") = RandomCropWithBBoxOp::kDefFillR, py::arg("fillG") = RandomCropWithBBoxOp::kDefFillG,
py::arg("fillB") = RandomCropWithBBoxOp::kDefFillB);
}));
PYBIND_REGISTER(CutOutOp, 1, ([](const py::module *m) {
(void)py::class_<CutOutOp, TensorOp, std::shared_ptr<CutOutOp>>(
*m, "CutOutOp",
"Tensor operation to randomly erase a portion of the image. Takes height and width.")
.def(py::init<int32_t, int32_t, int32_t, bool, uint8_t, uint8_t, uint8_t>(), py::arg("boxHeight"),
py::arg("boxWidth"), py::arg("numPatches"), py::arg("randomColor") = CutOutOp::kDefRandomColor,
py::arg("fillR") = CutOutOp::kDefFillR, py::arg("fillG") = CutOutOp::kDefFillG,
py::arg("fillB") = CutOutOp::kDefFillB);
.def(py::init<int32_t, int32_t, int32_t, bool, uint8_t, uint8_t, uint8_t>());
}));
PYBIND_REGISTER(PadOp, 1, ([](const py::module *m) {
(void)py::class_<PadOp, TensorOp, std::shared_ptr<PadOp>>(
*m, "PadOp",
"Pads image with specified color, default black, "
"Takes amount to pad for top, bottom, left, right of image, boarder type and color")
.def(py::init<int32_t, int32_t, int32_t, int32_t, BorderType, uint8_t, uint8_t, uint8_t>(),
py::arg("padTop"), py::arg("padBottom"), py::arg("padLeft"), py::arg("padRight"),
py::arg("borderTypes") = PadOp::kDefBorderType, py::arg("fillR") = PadOp::kDefFillR,
py::arg("fillG") = PadOp::kDefFillG, py::arg("fillB") = PadOp::kDefFillB);
(void)py::class_<PadOp, TensorOp, std::shared_ptr<PadOp>>(*m, "PadOp")
.def(py::init<int32_t, int32_t, int32_t, int32_t, BorderType, uint8_t, uint8_t, uint8_t>());
}));
PYBIND_REGISTER(RandomCropDecodeResizeOp, 1, ([](const py::module *m) {
(void)py::class_<RandomCropDecodeResizeOp, TensorOp, std::shared_ptr<RandomCropDecodeResizeOp>>(
*m, "RandomCropDecodeResizeOp", "equivalent to RandomCropAndResize but crops before decoding")
.def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>(),
py::arg("targetHeight"), py::arg("targetWidth"),
py::arg("scaleLb") = RandomCropDecodeResizeOp::kDefScaleLb,
py::arg("scaleUb") = RandomCropDecodeResizeOp::kDefScaleUb,
py::arg("aspectLb") = RandomCropDecodeResizeOp::kDefAspectLb,
py::arg("aspectUb") = RandomCropDecodeResizeOp::kDefAspectUb,
py::arg("interpolation") = RandomCropDecodeResizeOp::kDefInterpolation,
py::arg("maxIter") = RandomCropDecodeResizeOp::kDefMaxIter);
*m, "RandomCropDecodeResizeOp")
.def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>());
}));
PYBIND_REGISTER(
RandomResizeOp, 1, ([](const py::module *m) {
(void)py::class_<RandomResizeOp, TensorOp, std::shared_ptr<RandomResizeOp>>(
*m, "RandomResizeOp",
"Tensor operation to resize an image using a randomly selected interpolation. Takes height and width.")
.def(py::init<int32_t, int32_t>(), py::arg("targetHeight"),
py::arg("targetWidth") = RandomResizeOp::kDefTargetWidth);
}));
PYBIND_REGISTER(RandomResizeOp, 1, ([](const py::module *m) {
(void)py::class_<RandomResizeOp, TensorOp, std::shared_ptr<RandomResizeOp>>(*m, "RandomResizeOp")
.def(py::init<int32_t, int32_t>());
}));
PYBIND_REGISTER(RandomColorOp, 1, ([](const py::module *m) {
(void)py::class_<RandomColorOp, TensorOp, std::shared_ptr<RandomColorOp>>(
*m, "RandomColorOp",
"Tensor operation to blend an image with its grayscale version with random weights"
"Takes min and max for the range of random weights")
.def(py::init<float, float>(), py::arg("min"), py::arg("max"));
(void)py::class_<RandomColorOp, TensorOp, std::shared_ptr<RandomColorOp>>(*m, "RandomColorOp")
.def(py::init<float, float>());
}));
PYBIND_REGISTER(RandomColorAdjustOp, 1, ([](const py::module *m) {
(void)py::class_<RandomColorAdjustOp, TensorOp, std::shared_ptr<RandomColorAdjustOp>>(
*m, "RandomColorAdjustOp",
"Tensor operation to adjust an image's color randomly."
"Takes range for brightness, contrast, saturation, hue and")
.def(py::init<float, float, float, float, float, float, float, float>(),
py::arg("bright_factor_start"), py::arg("bright_factor_end"), py::arg("contrast_factor_start"),
py::arg("contrast_factor_end"), py::arg("saturation_factor_start"),
py::arg("saturation_factor_end"), py::arg("hue_factor_start"), py::arg("hue_factor_end"));
*m, "RandomColorAdjustOp")
.def(py::init<float, float, float, float, float, float, float, float>());
}));
PYBIND_REGISTER(RandomCropAndResizeWithBBoxOp, 1, ([](const py::module *m) {
(void)
py::class_<RandomCropAndResizeWithBBoxOp, TensorOp, std::shared_ptr<RandomCropAndResizeWithBBoxOp>>(
*m, "RandomCropAndResizeWithBBoxOp",
"Tensor operation to randomly crop an image (with BBoxes) and resize to a given size."
"Takes output height and width and"
"optional parameters for lower and upper bound for aspect ratio (h/w) and scale,"
"interpolation mode, and max attempts to crop")
.def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>(),
py::arg("targetHeight"), py::arg("targetWidth"),
py::arg("scaleLb") = RandomCropAndResizeWithBBoxOp::kDefScaleLb,
py::arg("scaleUb") = RandomCropAndResizeWithBBoxOp::kDefScaleUb,
py::arg("aspectLb") = RandomCropAndResizeWithBBoxOp::kDefAspectLb,
py::arg("aspectUb") = RandomCropAndResizeWithBBoxOp::kDefAspectUb,
py::arg("interpolation") = RandomCropAndResizeWithBBoxOp::kDefInterpolation,
py::arg("maxIter") = RandomCropAndResizeWithBBoxOp::kDefMaxIter);
*m, "RandomCropAndResizeWithBBoxOp")
.def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>());
}));
PYBIND_REGISTER(RandomCropAndResizeOp, 1, ([](const py::module *m) {
(void)py::class_<RandomCropAndResizeOp, TensorOp, std::shared_ptr<RandomCropAndResizeOp>>(
*m, "RandomCropAndResizeOp",
"Tensor operation to randomly crop an image and resize to a given size."
"Takes output height and width and"
"optional parameters for lower and upper bound for aspect ratio (h/w) and scale,"
"interpolation mode, and max attempts to crop")
.def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>(),
py::arg("targetHeight"), py::arg("targetWidth"),
py::arg("scaleLb") = RandomCropAndResizeOp::kDefScaleLb,
py::arg("scaleUb") = RandomCropAndResizeOp::kDefScaleUb,
py::arg("aspectLb") = RandomCropAndResizeOp::kDefAspectLb,
py::arg("aspectUb") = RandomCropAndResizeOp::kDefAspectUb,
py::arg("interpolation") = RandomCropAndResizeOp::kDefInterpolation,
py::arg("maxIter") = RandomCropAndResizeOp::kDefMaxIter);
*m, "RandomCropAndResizeOp")
.def(py::init<int32_t, int32_t, float, float, float, float, InterpolationMode, int32_t>());
}));
PYBIND_REGISTER(RandomRotationOp, 1, ([](const py::module *m) {
(void)py::class_<RandomRotationOp, TensorOp, std::shared_ptr<RandomRotationOp>>(
*m, "RandomRotationOp",
"Tensor operation to apply RandomRotation."
"Takes a range for degrees and "
"optional parameters for rotation center and image expand")
.def(
py::init<float, float, float, float, InterpolationMode, bool, uint8_t, uint8_t, uint8_t>(),
py::arg("startDegree"), py::arg("endDegree"), py::arg("centerX") = RandomRotationOp::kDefCenterX,
py::arg("centerY") = RandomRotationOp::kDefCenterY,
py::arg("interpolation") = RandomRotationOp::kDefInterpolation,
py::arg("expand") = RandomRotationOp::kDefExpand, py::arg("fillR") = RandomRotationOp::kDefFillR,
py::arg("fillG") = RandomRotationOp::kDefFillG, py::arg("fillB") = RandomRotationOp::kDefFillB);
(void)py::class_<RandomRotationOp, TensorOp, std::shared_ptr<RandomRotationOp>>(*m,
"RandomRotationOp")
.def(py::init<float, float, float, float, InterpolationMode, bool, uint8_t, uint8_t, uint8_t>());
}));
PYBIND_REGISTER(RandomSharpnessOp, 1, ([](const py::module *m) {
(void)py::class_<RandomSharpnessOp, TensorOp, std::shared_ptr<RandomSharpnessOp>>(
*m, "RandomSharpnessOp",
"Tensor operation to apply RandomSharpness."
"Takes a range for degrees")
.def(py::init<float, float>(), py::arg("startDegree") = RandomSharpnessOp::kDefStartDegree,
py::arg("endDegree") = RandomSharpnessOp::kDefEndDegree);
(void)py::class_<RandomSharpnessOp, TensorOp, std::shared_ptr<RandomSharpnessOp>>(*m,
"RandomSharpnessOp")
.def(py::init<float, float>());
}));
PYBIND_REGISTER(RandomSelectSubpolicyOp, 1, ([](const py::module *m) {
@ -400,23 +292,19 @@ PYBIND_REGISTER(RandomSelectSubpolicyOp, 1, ([](const py::module *m) {
return std::make_shared<RandomSelectSubpolicyOp>(cpp_policy);
}));
}));
PYBIND_REGISTER(SoftDvppDecodeResizeJpegOp, 1, ([](const py::module *m) {
(void)py::class_<SoftDvppDecodeResizeJpegOp, TensorOp, std::shared_ptr<SoftDvppDecodeResizeJpegOp>>(
*m, "SoftDvppDecodeResizeJpegOp", "TensorOp to use soft dvpp decode and resize jpeg image.")
.def(py::init<int32_t, int32_t>(), py::arg("targetHeight"), py::arg("targetWidth"));
*m, "SoftDvppDecodeResizeJpegOp")
.def(py::init<int32_t, int32_t>());
}));
PYBIND_REGISTER(
SoftDvppDecodeRandomCropResizeJpegOp, 1, ([](const py::module *m) {
(void)
py::class_<SoftDvppDecodeRandomCropResizeJpegOp, TensorOp, std::shared_ptr<SoftDvppDecodeRandomCropResizeJpegOp>>(
*m, "SoftDvppDecodeRandomCropResizeJpegOp",
"TensorOp to use soft dvpp decode, random crop and resize jepg image.")
.def(py::init<int32_t, int32_t, float, float, float, float, int32_t>(), py::arg("targetHeight"),
py::arg("targetWidth"), py::arg("scaleLb") = RandomCropDecodeResizeOp::kDefScaleLb,
py::arg("scaleUb") = RandomCropDecodeResizeOp::kDefScaleUb,
py::arg("aspectLb") = RandomCropDecodeResizeOp::kDefAspectLb,
py::arg("aspectUb") = RandomCropDecodeResizeOp::kDefAspectUb,
py::arg("maxIter") = RandomCropDecodeResizeOp::kDefMaxIter);
*m, "SoftDvppDecodeRandomCropResizeJpegOp")
.def(py::init<int32_t, int32_t, float, float, float, float, int32_t>());
}));
PYBIND_REGISTER(RandomSolarizeOp, 1, ([](const py::module *m) {

View File

@ -46,73 +46,50 @@ namespace dataset {
#ifdef ENABLE_ICU4C
PYBIND_REGISTER(BasicTokenizerOp, 1, ([](const py::module *m) {
(void)py::class_<BasicTokenizerOp, TensorOp, std::shared_ptr<BasicTokenizerOp>>(
*m, "BasicTokenizerOp", "Tokenize a scalar tensor of UTF-8 string by specific rules.")
.def(py::init<const bool &, const bool &, const NormalizeForm &, const bool &, const bool &>(),
py::arg("lower_case") = BasicTokenizerOp::kDefLowerCase,
py::arg("keep_whitespace") = BasicTokenizerOp::kDefKeepWhitespace,
py::arg("normalization_form") = BasicTokenizerOp::kDefNormalizationForm,
py::arg("preserve_unused_token") = BasicTokenizerOp::kDefPreserveUnusedToken,
py::arg("with_offsets") = BasicTokenizerOp::kDefWithOffsets);
(void)py::class_<BasicTokenizerOp, TensorOp, std::shared_ptr<BasicTokenizerOp>>(*m,
"BasicTokenizerOp")
.def(py::init<const bool &, const bool &, const NormalizeForm &, const bool &, const bool &>());
}));
PYBIND_REGISTER(WhitespaceTokenizerOp, 1, ([](const py::module *m) {
(void)py::class_<WhitespaceTokenizerOp, TensorOp, std::shared_ptr<WhitespaceTokenizerOp>>(
*m, "WhitespaceTokenizerOp", "Tokenize a scalar tensor of UTF-8 string on ICU defined whitespaces.")
.def(py::init<const bool &>(), py::arg(" with_offsets ") = WhitespaceTokenizerOp::kDefWithOffsets);
*m, "WhitespaceTokenizerOp")
.def(py::init<const bool &>());
}));
PYBIND_REGISTER(UnicodeScriptTokenizerOp, 1, ([](const py::module *m) {
(void)py::class_<UnicodeScriptTokenizerOp, TensorOp, std::shared_ptr<UnicodeScriptTokenizerOp>>(
*m, "UnicodeScriptTokenizerOp",
"Tokenize a scalar tensor of UTF-8 string on Unicode script boundaries.")
*m, "UnicodeScriptTokenizerOp")
.def(py::init<>())
.def(py::init<const bool &, const bool &>(),
py::arg("keep_whitespace") = UnicodeScriptTokenizerOp::kDefKeepWhitespace,
py::arg("with_offsets") = UnicodeScriptTokenizerOp::kDefWithOffsets);
.def(py::init<const bool &, const bool &>());
}));
PYBIND_REGISTER(CaseFoldOp, 1, ([](const py::module *m) {
(void)py::class_<CaseFoldOp, TensorOp, std::shared_ptr<CaseFoldOp>>(
*m, "CaseFoldOp", "Apply case fold operation on utf-8 string tensor")
.def(py::init<>());
}));
PYBIND_REGISTER(
CaseFoldOp, 1, ([](const py::module *m) {
(void)py::class_<CaseFoldOp, TensorOp, std::shared_ptr<CaseFoldOp>>(*m, "CaseFoldOp").def(py::init<>());
}));
PYBIND_REGISTER(NormalizeUTF8Op, 1, ([](const py::module *m) {
(void)py::class_<NormalizeUTF8Op, TensorOp, std::shared_ptr<NormalizeUTF8Op>>(
*m, "NormalizeUTF8Op", "Apply normalize operation on utf-8 string tensor.")
(void)py::class_<NormalizeUTF8Op, TensorOp, std::shared_ptr<NormalizeUTF8Op>>(*m, "NormalizeUTF8Op")
.def(py::init<>())
.def(py::init<NormalizeForm>(), py::arg("normalize_form") = NormalizeUTF8Op::kDefNormalizeForm);
.def(py::init<NormalizeForm>());
}));
PYBIND_REGISTER(RegexReplaceOp, 1, ([](const py::module *m) {
(void)py::class_<RegexReplaceOp, TensorOp, std::shared_ptr<RegexReplaceOp>>(
*m, "RegexReplaceOp",
"Replace utf-8 string tensor with 'replace' according to regular expression 'pattern'.")
.def(py::init<const std::string &, const std::string &, bool>(), py::arg("pattern"),
py::arg("replace"), py::arg("replace_all"));
(void)py::class_<RegexReplaceOp, TensorOp, std::shared_ptr<RegexReplaceOp>>(*m, "RegexReplaceOp")
.def(py::init<const std::string &, const std::string &, bool>());
}));
PYBIND_REGISTER(RegexTokenizerOp, 1, ([](const py::module *m) {
(void)py::class_<RegexTokenizerOp, TensorOp, std::shared_ptr<RegexTokenizerOp>>(
*m, "RegexTokenizerOp", "Tokenize a scalar tensor of UTF-8 string by regex expression pattern.")
.def(py::init<const std::string &, const std::string &, const bool &>(), py::arg("delim_pattern"),
py::arg("keep_delim_pattern"), py::arg("with_offsets") = RegexTokenizerOp::kDefWithOffsets);
(void)py::class_<RegexTokenizerOp, TensorOp, std::shared_ptr<RegexTokenizerOp>>(*m,
"RegexTokenizerOp")
.def(py::init<const std::string &, const std::string &, const bool &>());
}));
PYBIND_REGISTER(BertTokenizerOp, 1, ([](const py::module *m) {
(void)py::class_<BertTokenizerOp, TensorOp, std::shared_ptr<BertTokenizerOp>>(
*m, "BertTokenizerOp", "Tokenizer used for Bert text process.")
(void)py::class_<BertTokenizerOp, TensorOp, std::shared_ptr<BertTokenizerOp>>(*m, "BertTokenizerOp")
.def(py::init<const std::shared_ptr<Vocab> &, const std::string &, const int &, const std::string &,
const bool &, const bool &, const NormalizeForm &, const bool &, const bool &>(),
py::arg("vocab"),
py::arg("suffix_indicator") = std::string(WordpieceTokenizerOp::kDefSuffixIndicator),
py::arg("max_bytes_per_token") = WordpieceTokenizerOp::kDefMaxBytesPerToken,
py::arg("unknown_token") = std::string(WordpieceTokenizerOp::kDefUnknownToken),
py::arg("lower_case") = BasicTokenizerOp::kDefLowerCase,
py::arg("keep_whitespace") = BasicTokenizerOp::kDefKeepWhitespace,
py::arg("normalization_form") = BasicTokenizerOp::kDefNormalizationForm,
py::arg("preserve_unused_token") = BasicTokenizerOp::kDefPreserveUnusedToken,
py::arg("with_offsets") = WordpieceTokenizerOp::kDefWithOffsets);
const bool &, const bool &, const NormalizeForm &, const bool &, const bool &>());
}));
PYBIND_REGISTER(NormalizeForm, 0, ([](const py::module *m) {
@ -128,11 +105,9 @@ PYBIND_REGISTER(NormalizeForm, 0, ([](const py::module *m) {
#endif
PYBIND_REGISTER(JiebaTokenizerOp, 1, ([](const py::module *m) {
(void)py::class_<JiebaTokenizerOp, TensorOp, std::shared_ptr<JiebaTokenizerOp>>(
*m, "JiebaTokenizerOp", "")
.def(py::init<const std::string &, const std::string &, const JiebaMode &, const bool &>(),
py::arg("hmm_path"), py::arg("mp_path"), py::arg("mode") = JiebaMode::kMix,
py::arg("with_offsets") = JiebaTokenizerOp::kDefWithOffsets)
(void)py::class_<JiebaTokenizerOp, TensorOp, std::shared_ptr<JiebaTokenizerOp>>(*m,
"JiebaTokenizerOp")
.def(py::init<const std::string &, const std::string &, const JiebaMode &, const bool &>())
.def("add_word", [](JiebaTokenizerOp &self, const std::string word, int freq) {
THROW_IF_ERROR(self.AddWord(word, freq));
});
@ -140,13 +115,12 @@ PYBIND_REGISTER(JiebaTokenizerOp, 1, ([](const py::module *m) {
PYBIND_REGISTER(UnicodeCharTokenizerOp, 1, ([](const py::module *m) {
(void)py::class_<UnicodeCharTokenizerOp, TensorOp, std::shared_ptr<UnicodeCharTokenizerOp>>(
*m, "UnicodeCharTokenizerOp", "Tokenize a scalar tensor of UTF-8 string to Unicode characters.")
.def(py::init<const bool &>(), py::arg("with_offsets") = UnicodeCharTokenizerOp::kDefWithOffsets);
*m, "UnicodeCharTokenizerOp")
.def(py::init<const bool &>());
}));
PYBIND_REGISTER(LookupOp, 1, ([](const py::module *m) {
(void)py::class_<LookupOp, TensorOp, std::shared_ptr<LookupOp>>(
*m, "LookupOp", "Tensor operation to LookUp each word.")
(void)py::class_<LookupOp, TensorOp, std::shared_ptr<LookupOp>>(*m, "LookupOp")
.def(py::init([](std::shared_ptr<Vocab> vocab, const py::object &py_word) {
if (vocab == nullptr) {
THROW_IF_ERROR(Status(StatusCode::kUnexpectedError, "vocab object type is incorrect or null."));
@ -165,56 +139,42 @@ PYBIND_REGISTER(LookupOp, 1, ([](const py::module *m) {
}));
PYBIND_REGISTER(NgramOp, 1, ([](const py::module *m) {
(void)py::class_<NgramOp, TensorOp, std::shared_ptr<NgramOp>>(*m, "NgramOp",
"TensorOp performs ngram mapping.")
(void)py::class_<NgramOp, TensorOp, std::shared_ptr<NgramOp>>(*m, "NgramOp")
.def(py::init<const std::vector<int32_t> &, int32_t, int32_t, const std::string &,
const std::string &, const std::string &>(),
py::arg("ngrams"), py::arg("l_pad_len"), py::arg("r_pad_len"), py::arg("l_pad_token"),
py::arg("r_pad_token"), py::arg("separator"));
const std::string &, const std::string &>());
}));
PYBIND_REGISTER(
WordpieceTokenizerOp, 1, ([](const py::module *m) {
(void)py::class_<WordpieceTokenizerOp, TensorOp, std::shared_ptr<WordpieceTokenizerOp>>(
*m, "WordpieceTokenizerOp", "Tokenize scalar token or 1-D tokens to subword tokens.")
.def(
py::init<const std::shared_ptr<Vocab> &, const std::string &, const int &, const std::string &, const bool &>(),
py::arg("vocab"), py::arg("suffix_indicator") = std::string(WordpieceTokenizerOp::kDefSuffixIndicator),
py::arg("max_bytes_per_token") = WordpieceTokenizerOp::kDefMaxBytesPerToken,
py::arg("unknown_token") = std::string(WordpieceTokenizerOp::kDefUnknownToken),
py::arg("with_offsets") = WordpieceTokenizerOp::kDefWithOffsets);
}));
PYBIND_REGISTER(WordpieceTokenizerOp, 1, ([](const py::module *m) {
(void)py::class_<WordpieceTokenizerOp, TensorOp, std::shared_ptr<WordpieceTokenizerOp>>(
*m, "WordpieceTokenizerOp")
.def(py::init<const std::shared_ptr<Vocab> &, const std::string &, const int &, const std::string &,
const bool &>());
}));
PYBIND_REGISTER(SlidingWindowOp, 1, ([](const py::module *m) {
(void)py::class_<SlidingWindowOp, TensorOp, std::shared_ptr<SlidingWindowOp>>(
*m, "SlidingWindowOp", "TensorOp to apply sliding window to a 1-D Tensor.")
.def(py::init<uint32_t, int32_t>(), py::arg("width"), py::arg("axis"));
(void)py::class_<SlidingWindowOp, TensorOp, std::shared_ptr<SlidingWindowOp>>(*m, "SlidingWindowOp")
.def(py::init<uint32_t, int32_t>());
}));
PYBIND_REGISTER(
SentencePieceTokenizerOp, 1, ([](const py::module *m) {
(void)py::class_<SentencePieceTokenizerOp, TensorOp, std::shared_ptr<SentencePieceTokenizerOp>>(
*m, "SentencePieceTokenizerOp", "Tokenize scalar token or 1-D tokens to tokens by sentence piece.")
*m, "SentencePieceTokenizerOp")
.def(
py::init<std::shared_ptr<SentencePieceVocab> &, const SPieceTokenizerLoadType, const SPieceTokenizerOutType>(),
py::arg("vocab"), py::arg("load_type") = SPieceTokenizerLoadType::kModel,
py::arg("out_type") = SPieceTokenizerOutType::kString)
py::init<std::shared_ptr<SentencePieceVocab> &, const SPieceTokenizerLoadType, const SPieceTokenizerOutType>())
.def(py::init<const std::string &, const std::string &, const SPieceTokenizerLoadType,
const SPieceTokenizerOutType>(),
py::arg("model_path"), py::arg("model_filename"), py::arg("load_type") = SPieceTokenizerLoadType::kFile,
py::arg("out_type") = SPieceTokenizerOutType::kString);
const SPieceTokenizerOutType>());
}));
PYBIND_REGISTER(ToNumberOp, 1, ([](const py::module *m) {
(void)py::class_<ToNumberOp, TensorOp, std::shared_ptr<ToNumberOp>>(
*m, "ToNumberOp", "TensorOp to convert strings to numbers.")
.def(py::init<DataType>(), py::arg("data_type"))
.def(py::init<std::string>(), py::arg("data_type"));
(void)py::class_<ToNumberOp, TensorOp, std::shared_ptr<ToNumberOp>>(*m, "ToNumberOp")
.def(py::init<DataType>())
.def(py::init<std::string>());
}));
PYBIND_REGISTER(TruncateSequencePairOp, 1, ([](const py::module *m) {
(void)py::class_<TruncateSequencePairOp, TensorOp, std::shared_ptr<TruncateSequencePairOp>>(
*m, "TruncateSequencePairOp", "Tensor operation to truncate two tensors to a max_length")
*m, "TruncateSequencePairOp")
.def(py::init<int64_t>());
}));

View File

@ -62,7 +62,7 @@ PYBIND_REGISTER(
ShardSample, 0, ([](const py::module *m) {
(void)py::class_<mindrecord::ShardSample, mindrecord::ShardOperator, std::shared_ptr<mindrecord::ShardSample>>(
*m, "MindrecordSubsetRandomSampler")
.def(py::init<std::vector<int64_t>, uint32_t>(), py::arg("indices"), py::arg("seed") = GetSeed());
.def(py::init<std::vector<int64_t>, uint32_t>());
}));
PYBIND_REGISTER(ShardSequentialSample, 0, ([](const py::module *m) {

View File

@ -37,7 +37,6 @@ add_library(kernels-image OBJECT
random_vertical_flip_with_bbox_op.cc
random_sharpness_op.cc
rescale_op.cc
resize_bilinear_op.cc
resize_op.cc
rgba_to_bgr_op.cc
rgba_to_rgb_op.cc

View File

@ -1,26 +0,0 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/kernels/image/resize_bilinear_op.h"
#include <random>
#include "minddata/dataset/util/status.h"
namespace mindspore {
namespace dataset {
const int32_t ResizeBilinearOp::kDefWidth = 0;
} // namespace dataset
} // namespace mindspore

View File

@ -21,6 +21,7 @@ User can also define custom sampler by extending from Sampler class.
import numpy as np
import mindspore._c_dataengine as cde
import mindspore.dataset as ds
class Sampler:
"""
@ -541,7 +542,7 @@ class SubsetRandomSampler(BuiltinSampler):
return self.child_sampler.is_sharded()
def create_for_minddataset(self):
c_sampler = cde.MindrecordSubsetRandomSampler(self.indices)
c_sampler = cde.MindrecordSubsetRandomSampler(self.indices, ds.config.get_seed())
c_child_sampler = self.create_child_for_minddataset()
c_sampler.add_child(c_child_sampler)
return c_sampler

View File

@ -52,8 +52,8 @@ import mindspore._c_dataengine as cde
from .utils import JiebaMode, NormalizeForm, to_str, SPieceTokenizerOutType, SPieceTokenizerLoadType
from .validators import check_lookup, check_jieba_add_dict, \
check_jieba_add_word, check_jieba_init, check_with_offsets, check_unicode_script_tokenizer,\
check_wordpiece_tokenizer, check_regex_tokenizer, check_basic_tokenizer, check_ngram, check_pair_truncate,\
check_jieba_add_word, check_jieba_init, check_with_offsets, check_unicode_script_tokenizer, \
check_wordpiece_tokenizer, check_regex_tokenizer, check_basic_tokenizer, check_ngram, check_pair_truncate, \
check_to_number, check_bert_tokenizer, check_python_tokenizer, check_slidingwindow
from ..core.datatypes import mstype_to_detype
@ -100,7 +100,8 @@ class SlidingWindow(cde.SlidingWindowOp):
@check_slidingwindow
def __init__(self, width, axis=0):
super().__init__(width=width, axis=axis)
super().__init__(width, axis)
class Ngram(cde.NgramOp):
@ -126,8 +127,7 @@ class Ngram(cde.NgramOp):
@check_ngram
def __init__(self, n, left_pad=("", 0), right_pad=("", 0), separator=" "):
super().__init__(ngrams=n, l_pad_len=left_pad[1], r_pad_len=right_pad[1], l_pad_token=left_pad[0],
r_pad_token=right_pad[0], separator=separator)
super().__init__(n, left_pad[1], right_pad[1], left_pad[0], right_pad[0], separator)
DE_C_INTER_JIEBA_MODE = {
@ -326,6 +326,7 @@ class WordpieceTokenizer(cde.WordpieceTokenizerOp):
super().__init__(self.vocab, self.suffix_indicator, self.max_bytes_per_token,
self.unknown_token, self.with_offsets)
DE_C_INTER_SENTENCEPIECE_LOADTYPE = {
SPieceTokenizerLoadType.FILE: cde.SPieceTokenizerLoadType.DE_SPIECE_TOKENIZER_LOAD_KFILE,
SPieceTokenizerLoadType.MODEL: cde.SPieceTokenizerLoadType.DE_SPIECE_TOKENIZER_LOAD_KMODEL
@ -336,6 +337,7 @@ DE_C_INTER_SENTENCEPIECE_OUTTYPE = {
SPieceTokenizerOutType.INT: cde.SPieceTokenizerOutType.DE_SPIECE_TOKENIZER_OUTTYPE_KINT
}
class SentencePieceTokenizer(cde.SentencePieceTokenizerOp):
"""
Tokenize scalar token or 1-D tokens to tokens by sentencepiece.
@ -357,6 +359,7 @@ class SentencePieceTokenizer(cde.SentencePieceTokenizerOp):
super().__init__(mode, DE_C_INTER_SENTENCEPIECE_LOADTYPE[SPieceTokenizerLoadType.MODEL],
DE_C_INTER_SENTENCEPIECE_OUTTYPE[out_type])
if platform.system().lower() != 'windows':
class WhitespaceTokenizer(cde.WhitespaceTokenizerOp):
"""

View File

@ -362,7 +362,7 @@ class RandomCrop(cde.RandomCropOp):
padding = (0, 0, 0, 0)
else:
padding = parse_padding(padding)
if isinstance(fill_value, int): # temporary fix
if isinstance(fill_value, int):
fill_value = tuple([fill_value] * 3)
border_type = DE_C_BORDER_TYPE[padding_mode]
@ -417,7 +417,7 @@ class RandomCropWithBBox(cde.RandomCropWithBBoxOp):
else:
padding = parse_padding(padding)
if isinstance(fill_value, int): # temporary fix
if isinstance(fill_value, int):
fill_value = tuple([fill_value] * 3)
border_type = DE_C_BORDER_TYPE[padding_mode]
@ -549,9 +549,8 @@ class Resize(cde.ResizeOp):
self.interpolation = interpolation
interpoltn = DE_C_INTER_MODE[interpolation]
if isinstance(size, int):
super().__init__(size, interpolation=interpoltn)
else:
super().__init__(*size, interpoltn)
size = (size, 0)
super().__init__(*size, interpoltn)
class ResizeWithBBox(cde.ResizeWithBBoxOp):
@ -579,9 +578,8 @@ class ResizeWithBBox(cde.ResizeWithBBoxOp):
self.interpolation = interpolation
interpoltn = DE_C_INTER_MODE[interpolation]
if isinstance(size, int):
super().__init__(size, interpolation=interpoltn)
else:
super().__init__(*size, interpoltn)
size = (size, 0)
super().__init__(*size, interpoltn)
class RandomResizedCropWithBBox(cde.RandomCropAndResizeWithBBoxOp):
@ -779,7 +777,7 @@ class RandomRotation(cde.RandomRotationOp):
degrees = (-degrees, degrees)
if center is None:
center = (-1, -1)
if isinstance(fill_value, int): # temporary fix
if isinstance(fill_value, int):
fill_value = tuple([fill_value] * 3)
interpolation = DE_C_INTER_MODE[resample]
super().__init__(*degrees, *center, interpolation, expand, *fill_value)
@ -816,9 +814,8 @@ class RandomResize(cde.RandomResizeOp):
def __init__(self, size):
self.size = size
if isinstance(size, int):
super().__init__(size)
else:
super().__init__(*size)
size = (size, 0)
super().__init__(*size)
class RandomResizeWithBBox(cde.RandomResizeWithBBoxOp):
@ -837,9 +834,8 @@ class RandomResizeWithBBox(cde.RandomResizeWithBBoxOp):
def __init__(self, size):
self.size = size
if isinstance(size, int):
super().__init__(size)
else:
super().__init__(*size)
size = (size, 0)
super().__init__(*size)
class HWC2CHW(cde.ChannelSwapOp):
@ -918,7 +914,7 @@ class Pad(cde.PadOp):
@check_pad
def __init__(self, padding, fill_value=0, padding_mode=Border.CONSTANT):
padding = parse_padding(padding)
if isinstance(fill_value, int): # temporary fix
if isinstance(fill_value, int):
fill_value = tuple([fill_value] * 3)
padding_mode = DE_C_BORDER_TYPE[padding_mode]

View File

@ -59,7 +59,6 @@ SET(DE_UT_SRCS
rename_op_test.cc
repeat_op_test.cc
rescale_op_test.cc
resize_bilinear_op_test.cc
resize_op_test.cc
resize_with_bbox_op_test.cc
rgba_to_bgr_op_test.cc

View File

@ -1200,4 +1200,8 @@ TEST_F(MindDataTestPipeline, TestRandomSolarizeFail) {
threshold = {1};
random_solarize = mindspore::dataset::api::vision::RandomSolarize(threshold);
EXPECT_EQ(random_solarize, nullptr);
threshold = {};
random_solarize = mindspore::dataset::api::vision::RandomSolarize(threshold);
EXPECT_EQ(random_solarize, nullptr);
}

View File

@ -1,44 +0,0 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common.h"
#include "common/cvop_common.h"
#include "minddata/dataset/kernels/image/resize_bilinear_op.h"
#include "utils/log_adapter.h"
using namespace mindspore::dataset;
using mindspore::MsLogLevel::INFO;
using mindspore::ExceptionType::NoExceptionType;
using mindspore::LogStream;
class MindDataTestResizeBilinearOp : public UT::CVOP::CVOpCommon {
public:
MindDataTestResizeBilinearOp() : CVOpCommon() {}
};
TEST_F(MindDataTestResizeBilinearOp, TestOp) {
MS_LOG(INFO) << "Doing testResizeBilinear.";
// Resizing with a factor of 0.5
TensorShape s = input_tensor_->shape();
int output_w = 0.5 * s[0];
int output_h = (s[0] * output_w) / s[1];
std::shared_ptr<Tensor> output_tensor;
// Resizing
std::unique_ptr<ResizeBilinearOp> op(new ResizeBilinearOp(output_h, output_w));
Status st = op->Compute(input_tensor_, &output_tensor);
EXPECT_TRUE(st.IsOk());
CheckImageShapeAndData(output_tensor, kResizeBilinear);
MS_LOG(INFO) << "testResizeBilinear end.";
}