forked from mindspore-Ecosystem/mindspore
!8526 Add 'in_channel' and 'out_channel' to cell_attr_register
From: @wanyiming Reviewed-by: @kingxian Signed-off-by: @kingxian
This commit is contained in:
commit
99fc0a4e64
|
@ -190,10 +190,10 @@ class Dense(Cell):
|
|||
ValueError: If weight_init or bias_init shape is incorrect.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`.
|
||||
- **input** (Tensor) - Tensor of shape :math:`(*, in\_channels)`.
|
||||
|
||||
Outputs:
|
||||
Tensor of shape :math:`(N, out\_channels)`.
|
||||
Tensor of shape :math:`(*, out\_channels)`.
|
||||
|
||||
Examples:
|
||||
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
|
||||
|
@ -203,7 +203,7 @@ class Dense(Cell):
|
|||
[[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
|
||||
[ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
|
||||
"""
|
||||
@cell_attr_register(attrs=['has_bias', 'activation'])
|
||||
@cell_attr_register(attrs=['has_bias', 'activation', 'in_channels', 'out_channels'])
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
|
|
|
@ -31,6 +31,18 @@ class Net(nn.Cell):
|
|||
def construct(self, x):
|
||||
return self.dense(x)
|
||||
|
||||
class MultiLayerDense(nn.Cell):
|
||||
def __init__(self):
|
||||
super(MultiLayerDense, self).__init__()
|
||||
self.dense1 = nn.Dense(in_channels=256, out_channels=512)
|
||||
self.dense1 = nn.Dense(in_channels=512, out_channels=1024)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
x = self.dense1(x)
|
||||
x = self.dense2(x)
|
||||
return x
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32, 2048).astype(np.float32)
|
||||
|
@ -46,3 +58,11 @@ def test_net_ND():
|
|||
output = net(Tensor(x))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
||||
def test_net_multilayer():
|
||||
x = np.random.randn(16, 32, 256).astype(np.float32)
|
||||
net = MultiLayerDense()
|
||||
output = net(Tensor(x))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
||||
|
|
|
@ -0,0 +1,65 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
|
||||
context.set_context(device_target="GPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.dense = nn.Dense(2048, 1001)
|
||||
|
||||
def construct(self, x):
|
||||
return self.dense(x)
|
||||
|
||||
class MultiLayerDense(nn.Cell):
|
||||
def __init__(self):
|
||||
super(MultiLayerDense, self).__init__()
|
||||
self.dense1 = nn.Dense(in_channels=256, out_channels=512)
|
||||
self.dense1 = nn.Dense(in_channels=512, out_channels=1024)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.dense1(x)
|
||||
x = self.dense2(x)
|
||||
return x
|
||||
|
||||
|
||||
def test_net():
|
||||
x = np.random.randn(32, 2048).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
||||
def test_net_ND():
|
||||
x = np.random.randn(2, 332, 2048).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
||||
|
||||
|
||||
def test_net_multilayer():
|
||||
x = np.random.randn(16, 32, 256).astype(np.float32)
|
||||
net = MultiLayerDense()
|
||||
output = net(Tensor(x))
|
||||
print(x)
|
||||
print(output.asnumpy())
|
Loading…
Reference in New Issue