Implement UNet3d on GPU

This commit is contained in:
likesen 2021-06-23 16:22:03 +08:00
parent 7d94095730
commit 99a995b432
21 changed files with 1034 additions and 61 deletions

View File

@ -42,9 +42,9 @@ class SliceGpuFwdKernel : public GpuKernel {
} }
T *input = GetDeviceAddress<T>(inputs, 0); T *input = GetDeviceAddress<T>(inputs, 0);
T *output = GetDeviceAddress<T>(outputs, 0); T *output = GetDeviceAddress<T>(outputs, 0);
Slice4DKernel(begin_[0], begin_[1], begin_[2], begin_[3], size_[0], size_[1], size_[2], size_[3], input_shape_[0], Slice5DKernel(begin_[0], begin_[1], begin_[2], begin_[3], begin_[4], size_[0], size_[1], size_[2], size_[3],
input_shape_[1], input_shape_[2], input_shape_[3], input, output, size_[4], input_shape_[0], input_shape_[1], input_shape_[2], input_shape_[3], input_shape_[4], input,
reinterpret_cast<cudaStream_t>(stream_ptr)); output, reinterpret_cast<cudaStream_t>(stream_ptr));
return true; return true;
} }
bool Init(const CNodePtr &kernel_node) override { bool Init(const CNodePtr &kernel_node) override {
@ -53,28 +53,35 @@ class SliceGpuFwdKernel : public GpuKernel {
} }
auto data_format = AnfAlgo::GetInputFormat(kernel_node, 0); auto data_format = AnfAlgo::GetInputFormat(kernel_node, 0);
auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0); auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
ShapeNdTo4d(input_shape, &input_shape_); ShapeNdTo5d(input_shape, &input_shape_);
for (auto i = begin_.size(); i < 4; i++) { for (auto i = begin_.size(); i < 5; i++) {
(void)begin_.insert(begin_.begin(), 0); (void)begin_.insert(begin_.begin(), 0);
} }
for (size_t i = size_.size(); i < 4; i++) { for (size_t i = size_.size(); i < 5; i++) {
(void)size_.insert(size_.begin(), 1); (void)size_.insert(size_.begin(), 1);
} }
input_size_ = input_shape_[0] * input_shape_[1] * input_shape_[2] * input_shape_[3] * sizeof(T); input_size_ = input_shape_[0] * input_shape_[1] * input_shape_[2] * input_shape_[3] * input_shape_[4] * sizeof(T);
auto out_shape = AnfAlgo::GetOutputDeviceShape(kernel_node, 0); auto out_shape = AnfAlgo::GetOutputDeviceShape(kernel_node, 0);
output_size_ = sizeof(T); output_size_ = sizeof(T);
for (size_t x : out_shape) { for (size_t x : out_shape) {
output_size_ = output_size_ * x; output_size_ = output_size_ * x;
} }
// transpose begin and size for NHWC data // transpose begin and size for NHWC and NDHWC data
if (data_format == "NHWC") { if (data_format == "NHWC") {
std::swap(begin_[1], begin_[3]); std::swap(begin_[1], begin_[3]);
std::swap(begin_[1], begin_[2]); std::swap(begin_[1], begin_[2]);
std::swap(size_[1], size_[3]); std::swap(size_[1], size_[3]);
std::swap(size_[1], size_[2]); std::swap(size_[1], size_[2]);
} else if (data_format == "NDHWC") {
std::swap(begin_[1], begin_[4]);
std::swap(begin_[1], begin_[3]);
std::swap(begin_[1], begin_[2]);
std::swap(size_[1], size_[4]);
std::swap(size_[1], size_[3]);
std::swap(size_[1], size_[2]);
} }
InitSizeLists(); InitSizeLists();
return true; return true;
@ -87,6 +94,18 @@ class SliceGpuFwdKernel : public GpuKernel {
} }
private: private:
// expand Nd Shape to 5d (N in [0,5])
void ShapeNdTo5d(const std::vector<size_t> &src, std::vector<size_t> *dst) {
if (src.size() > 5) {
MS_EXCEPTION(ValueError) << src.size() << "-D data is not supported!";
}
dst->push_back(src.size() < 5 ? 1 : src[src.size() - 5]);
dst->push_back(src.size() < 4 ? 1 : src[src.size() - 4]);
dst->push_back(src.size() < 3 ? 1 : src[src.size() - 3]);
dst->push_back(src.size() < 2 ? 1 : src[src.size() - 2]);
dst->push_back(src.size() == 0 ? 1 : src[src.size() - 1]);
}
bool CheckParam(const CNodePtr &kernel_node) { bool CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) { if (input_num != 1) {
@ -99,8 +118,8 @@ class SliceGpuFwdKernel : public GpuKernel {
return false; return false;
} }
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
if (input_shape.size() > 4) { if (input_shape.size() > 5) {
MS_LOG(ERROR) << "Input dims is " << input_shape.size() << ", but SliceGpuFwdKernel olny support 4d or lower."; MS_LOG(ERROR) << "Input dims is " << input_shape.size() << ", but SliceGpuFwdKernel olny support 5d or lower.";
return false; return false;
} }
if (input_shape.size() == 0) { if (input_shape.size() == 0) {

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2020 Huawei Technologies Co., Ltd * Copyright 2020-2021 Huawei Technologies Co., Ltd
* *
* Licensed under the Apache License, Version 2.0 (the "License"); * Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License. * you may not use this file except in compliance with the License.
@ -30,6 +30,26 @@ void CalReLUGrad(int size, T *dy, T *y, T *dx, cudaStream_t cuda_stream) {
return; return;
} }
template <typename T>
__global__ void PReluChannelSharedGradKernel(size_t size, T *dy_addr, T *x_addr, T *w_addr, T *dx_addr, T *dwc_addr) {
T zero = static_cast<T>(0);
T w = w_addr[0];
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < size; pos += blockDim.x * gridDim.x) {
T dy = dy_addr[pos];
T x = x_addr[pos];
dx_addr[pos] = x > zero ? dy : w * dy;
dwc_addr[pos] = x > zero ? zero : x * dy;
}
}
template <typename T>
void PReluChannelSharedGrad(size_t input_size, T *dy_addr, T *x_addr, T *w_addr, T *dx_addr, T *dwc_addr,
cudaStream_t cuda_stream) {
PReluChannelSharedGradKernel<<<GET_BLOCKS(input_size), GET_THREADS, 0, cuda_stream>>>(input_size, dy_addr, x_addr,
w_addr, dx_addr, dwc_addr);
return;
}
template void CalReLUGrad(int size, double *dy, double *y, double *dx, cudaStream_t cuda_stream); template void CalReLUGrad(int size, double *dy, double *y, double *dx, cudaStream_t cuda_stream);
template void CalReLUGrad(int size, float *dy, float *y, float *dx, cudaStream_t cuda_stream); template void CalReLUGrad(int size, float *dy, float *y, float *dx, cudaStream_t cuda_stream);
template void CalReLUGrad(int size, half *dy, half *y, half *dx, cudaStream_t cuda_stream); template void CalReLUGrad(int size, half *dy, half *y, half *dx, cudaStream_t cuda_stream);
@ -38,3 +58,7 @@ template void CalReLUGrad(int size, int16_t *dy, int16_t *y, int16_t *dx, cudaSt
template void CalReLUGrad(int size, int32_t *dy, int32_t *y, int32_t *dx, cudaStream_t cuda_stream); template void CalReLUGrad(int size, int32_t *dy, int32_t *y, int32_t *dx, cudaStream_t cuda_stream);
template void CalReLUGrad(int size, int64_t *dy, int64_t *y, int64_t *dx, cudaStream_t cuda_stream); template void CalReLUGrad(int size, int64_t *dy, int64_t *y, int64_t *dx, cudaStream_t cuda_stream);
template void CalReLUGrad(int size, uint8_t *dy, uint8_t *y, uint8_t *dx, cudaStream_t cuda_stream); template void CalReLUGrad(int size, uint8_t *dy, uint8_t *y, uint8_t *dx, cudaStream_t cuda_stream);
template void PReluChannelSharedGrad(size_t input_size, float *dy_addr, float *x_addr, float *w_addr, float *dx_addr,
float *dwc_addr, cudaStream_t cuda_stream);
template void PReluChannelSharedGrad(size_t input_size, half *dy_addr, half *x_addr, half *w_addr, half *dx_addr,
half *dwc_addr, cudaStream_t cuda_stream);

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2020 Huawei Technologies Co., Ltd * Copyright 2020-2021 Huawei Technologies Co., Ltd
* *
* Licensed under the Apache License, Version 2.0 (the "License"); * Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License. * you may not use this file except in compliance with the License.
@ -20,4 +20,8 @@
#include "runtime/device/gpu/cuda_common.h" #include "runtime/device/gpu/cuda_common.h"
template <typename T> template <typename T>
void CalReLUGrad(int input_size, T *dy, T *y, T *dx, cudaStream_t cuda_stream); void CalReLUGrad(int input_size, T *dy, T *y, T *dx, cudaStream_t cuda_stream);
template <typename T>
void PReluChannelSharedGrad(size_t input_size, T *dy_addr, T *x_addr, T *w_addr, T *dx_addr, T *dwc_addr,
cudaStream_t cuda_stream);
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_GRAD_H_ #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_RELU_GRAD_H_

View File

@ -35,6 +35,25 @@ __global__ void Slice4D(const size_t s1, const size_t s2, const size_t s3, const
} }
} }
template <typename T>
__global__ void Slice5D(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l5,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const T *input, T *output) {
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (l1 * l2 * l3 * l4 * l5);
pos += blockDim.x * gridDim.x) {
size_t i = pos / (l2 * l3 * l4 * l5) % l1;
size_t j = pos / (l3 * l4 * l5) % l2;
size_t k = pos / (l4 * l5) % l3;
size_t o = pos / l5 % l4;
size_t q = pos % l5;
size_t offset =
(i + s1) * (d2 * d3 * d4 * d5) + (j + s2) * (d3 * d4 * d5) + (k + s3) * (d4 * d5) + (o + s4) * d5 + (q + s5);
output[pos] = input[offset];
}
}
template <typename T> template <typename T>
__global__ void Slice4DGrad(const size_t s1, const size_t s2, const size_t s3, const size_t s4, __global__ void Slice4DGrad(const size_t s1, const size_t s2, const size_t s3, const size_t s4,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l1, const size_t l2, const size_t l3, const size_t l4,
@ -70,7 +89,13 @@ void Slice4DKernel(const size_t s1, const size_t s2, const size_t s3, const size
Slice4D<<<GET_BLOCKS(l1 * l2 * l3 * l4), GET_THREADS, 0, stream>>>(s1, s2, s3, s4, l1, l2, l3, l4, d1, d2, d3, d4, Slice4D<<<GET_BLOCKS(l1 * l2 * l3 * l4), GET_THREADS, 0, stream>>>(s1, s2, s3, s4, l1, l2, l3, l4, d1, d2, d3, d4,
input, output); input, output);
} }
template <typename T>
void Slice5DKernel(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5, const size_t l1,
const size_t l2, const size_t l3, const size_t l4, const size_t l5, const size_t d1, const size_t d2,
const size_t d3, const size_t d4, const size_t d5, const T *input, T *output, cudaStream_t stream) {
Slice5D<<<GET_BLOCKS(l1 * l2 * l3 * l4 * l5), GET_THREADS, 0, stream>>>(s1, s2, s3, s4, s5, l1, l2, l3, l4, l5, d1,
d2, d3, d4, d5, input, output);
}
template <typename T> template <typename T>
void CalSlice4DGrad(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t l1, void CalSlice4DGrad(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t l1,
const size_t l2, const size_t l3, const size_t l4, const size_t d1, const size_t d2, const size_t l2, const size_t l3, const size_t l4, const size_t d1, const size_t d2,
@ -184,6 +209,39 @@ template void Slice4DKernel(const size_t s1, const size_t s2, const size_t s3, c
const size_t l2, const size_t l3, const size_t l4, const size_t d1, const size_t d2, const size_t l2, const size_t l3, const size_t l4, const size_t d1, const size_t d2,
const size_t d3, const size_t d4, const bool *input, bool *output, cudaStream_t stream); const size_t d3, const size_t d4, const bool *input, bool *output, cudaStream_t stream);
template void Slice5DKernel(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l5,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const double *input, double *output, cudaStream_t stream);
template void Slice5DKernel(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l5,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const float *input, float *output, cudaStream_t stream);
template void Slice5DKernel(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l5,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const half *input, half *output, cudaStream_t stream);
template void Slice5DKernel(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l5,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const int64_t *input, int64_t *output, cudaStream_t stream);
template void Slice5DKernel(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l5,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const int *input, int *output, cudaStream_t stream);
template void Slice5DKernel(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l5,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const short *input, short *output, cudaStream_t stream); // NOLINT
template void Slice5DKernel(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l5,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const unsigned char *input, unsigned char *output, cudaStream_t stream);
template void Slice5DKernel(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l5,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d5,
const bool *input, bool *output, cudaStream_t stream);
template void CalSlice4DGrad<double>(const size_t s1, const size_t s2, const size_t s3, const size_t s4, template void CalSlice4DGrad<double>(const size_t s1, const size_t s2, const size_t s3, const size_t s4,
const size_t l1, const size_t l2, const size_t l3, const size_t l4, const size_t l1, const size_t l2, const size_t l3, const size_t l4,
const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t d1, const size_t d2, const size_t d3, const size_t d4,

View File

@ -26,6 +26,10 @@ void Slice4DKernel(const size_t s1, const size_t s2, const size_t s3, const size
const size_t l3, const size_t l4, const size_t d1, const size_t d2, const size_t d3, const size_t d4, const size_t l3, const size_t l4, const size_t d1, const size_t d2, const size_t d3, const size_t d4,
const T *input, T *output, cudaStream_t stream); const T *input, T *output, cudaStream_t stream);
template <typename T> template <typename T>
void Slice5DKernel(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t s5, const size_t l1,
const size_t l2, const size_t l3, const size_t l4, const size_t l5, const size_t d1, const size_t d2,
const size_t d3, const size_t d4, const size_t d5, const T *input, T *output, cudaStream_t stream);
template <typename T>
void CalSlice4DGrad(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t l1, void CalSlice4DGrad(const size_t s1, const size_t s2, const size_t s3, const size_t s4, const size_t l1,
const size_t l2, const size_t l3, const size_t l4, const size_t d1, const size_t d2, const size_t l2, const size_t l3, const size_t l4, const size_t d1, const size_t d2,
const size_t d3, const size_t d4, const T *dy, T *dx, cudaStream_t stream); const size_t d3, const size_t d4, const T *dy, T *dx, cudaStream_t stream);

View File

@ -0,0 +1,38 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nn/prelu_grad_kernel.h"
namespace mindspore {
namespace kernel {
MS_REG_GPU_KERNEL_ONE(PReLUGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
PReLUGpuGradKernel, float)
MS_REG_GPU_KERNEL_ONE(PReLUGrad,
KernelAttr()
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddInputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16)
.AddOutputAttr(kNumberTypeFloat16),
PReLUGpuGradKernel, half)
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,196 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PRELU_GRAD_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PRELU_GRAD_KERNEL_H_
#include <vector>
#include <string>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/kernel_constants.h"
#include "backend/kernel_compiler/gpu/cuda_impl/relu_grad_impl.cuh"
namespace mindspore {
namespace kernel {
template <typename T>
class PReLUGpuGradKernel : public GpuKernel {
public:
PReLUGpuGradKernel()
: data_format_(kOpFormat_NCDHW),
input_size_(0),
weight_size_(0),
reduce_workspace_size_(0),
spatial_count_(1),
is_null_input_(false),
channel_shared_(false),
channel_last_(false) {}
~PReLUGpuGradKernel() override { DestroyResource(); }
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
T *dy_addr = GetDeviceAddress<T>(inputs, 0);
T *x_addr = GetDeviceAddress<T>(inputs, 1);
T *w_addr = GetDeviceAddress<T>(inputs, 2);
T *dx_addr = GetDeviceAddress<T>(outputs, 0);
T *dw_addr = GetDeviceAddress<T>(outputs, 1);
T *dw_collector_addr = GetDeviceAddress<T>(workspace, 0);
T *reduce_workspace_addr = GetDeviceAddress<T>(workspace, 1);
PReluChannelSharedGrad(input_size_ / sizeof(T), dy_addr, x_addr, w_addr, dx_addr, dw_collector_addr,
reinterpret_cast<cudaStream_t>(stream_ptr));
if (data_type_ == CUDNN_DATA_DOUBLE) {
T alpha = static_cast<T>(1.0f);
T beta = static_cast<T>(0.0f);
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_,
cudnnReduceTensor(cudnn_handle_, reduce_tensor_descriptor_, nullptr, 0, reduce_workspace_addr,
reduce_workspace_size_, &alpha, grad_weight_collector_descriptor_, dw_collector_addr, &beta,
grad_weight_descriptor_, dw_addr),
"cudnnReduceTensor failed.");
} else {
const float alphaf = static_cast<float>(1.0f);
const float betaf = static_cast<float>(0.0f);
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_,
cudnnReduceTensor(cudnn_handle_, reduce_tensor_descriptor_, nullptr, 0, reduce_workspace_addr,
reduce_workspace_size_, &alphaf, grad_weight_collector_descriptor_, dw_collector_addr, &betaf,
grad_weight_descriptor_, dw_addr),
"cudnnReduceTensor failed.");
}
return true;
}
void InitResource() override {
cudnn_handle_ = device::gpu::GPUDeviceManager::GetInstance().GetCudnnHandle();
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateReduceTensorDescriptor(&reduce_tensor_descriptor_),
"cudnnCreateReduceTensorDescriptor failed.");
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateTensorDescriptor(&grad_weight_collector_descriptor_),
"cudnnCreateTensorDescriptor failed.");
CHECK_CUDNN_RET_WITH_EXCEPT(kernel_node_, cudnnCreateTensorDescriptor(&grad_weight_descriptor_),
"cudnnCreateTensorDescriptor failed.");
}
void DestroyResource() noexcept override {
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyReduceTensorDescriptor(reduce_tensor_descriptor_),
"cudnnDestroyReduceTensorDescriptor failed.");
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyTensorDescriptor(grad_weight_collector_descriptor_),
"cudnnDestroyTensorDescriptor failed.");
CHECK_CUDNN_RET_WITH_ERROR(kernel_node_, cudnnDestroyTensorDescriptor(grad_weight_descriptor_),
"cudnnDestroyTensorDescriptor failed.");
}
bool Init(const CNodePtr &kernel_node) override {
kernel_node_ = kernel_node;
input_size_ = sizeof(T);
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
is_null_input_ = CHECK_NULL_INPUT(input_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "PReLUGpuBwdKernel input is null.";
}
for (size_t i = 0; i < input_shape.size(); ++i) {
input_size_ *= input_shape[i];
}
weight_size_ = sizeof(T);
auto weight_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 2);
is_null_input_ = CHECK_NULL_INPUT(weight_shape);
if (is_null_input_) {
MS_LOG(WARNING) << "PReLUGpuBwdKernel input is null.";
}
for (auto dim : weight_shape) {
weight_size_ *= dim;
}
channel_shared_ = (weight_shape[0] == 1);
if (!channel_shared_) {
MS_LOG(WARNING)
<< "PReLUGpuBwdKernel shares weight for all channels, but the given weight tensor has more than one element.";
}
spatial_count_ = 1;
if (channel_last_) {
for (size_t i = 1; i < input_shape.size() - 1; ++i) {
spatial_count_ *= input_shape[i];
}
} else {
for (size_t i = 2; i < input_shape.size(); ++i) {
spatial_count_ *= input_shape[i];
}
}
data_type_ = GetCudnnDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
int input_dim_length = input_shape.size();
std::vector<size_t> reduce_out_shape(input_dim_length, 1);
if (channel_last_) {
reduce_out_shape[input_dim_length - 1] = weight_shape[0];
} else {
reduce_out_shape[1] = weight_shape[0];
}
InitResource();
CudnnSetTensorNdDescriptor(reduce_out_shape, grad_weight_descriptor_, data_type_, kernel_node_);
CudnnSetTensorNdDescriptor(input_shape, grad_weight_collector_descriptor_, data_type_, kernel_node_);
cudnnDataType_t comp_type = (data_type_ == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_,
cudnnSetReduceTensorDescriptor(reduce_tensor_descriptor_, CUDNN_REDUCE_TENSOR_ADD, comp_type,
CUDNN_NOT_PROPAGATE_NAN, CUDNN_REDUCE_TENSOR_NO_INDICES, CUDNN_32BIT_INDICES),
"cudnnSetReduceTensorDescriptor failed");
InitSizeLists();
return true;
}
protected:
void InitSizeLists() override {
input_size_list_.push_back(input_size_);
input_size_list_.push_back(input_size_);
input_size_list_.push_back(weight_size_);
output_size_list_.push_back(input_size_);
output_size_list_.push_back(weight_size_);
CHECK_CUDNN_RET_WITH_EXCEPT(
kernel_node_,
cudnnGetReductionWorkspaceSize(cudnn_handle_, reduce_tensor_descriptor_, grad_weight_collector_descriptor_,
grad_weight_descriptor_, &reduce_workspace_size_),
"cudnnGetReductionWorkspaceSize failed.");
workspace_size_list_.push_back(input_size_);
workspace_size_list_.push_back(reduce_workspace_size_);
}
private:
cudnnHandle_t cudnn_handle_;
cudnnDataType_t data_type_;
cudnnReduceTensorDescriptor_t reduce_tensor_descriptor_;
cudnnTensorDescriptor_t grad_weight_collector_descriptor_;
cudnnTensorDescriptor_t grad_weight_descriptor_;
std::vector<size_t> input_size_list_;
std::vector<size_t> output_size_list_;
std::vector<size_t> workspace_size_list_;
std::string data_format_ = kOpFormat_NCDHW;
size_t input_size_;
size_t weight_size_;
size_t reduce_workspace_size_;
size_t spatial_count_;
bool is_null_input_ = false;
bool channel_shared_ = false;
bool channel_last_ = false;
};
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_PRELU_GRAD_KERNEL_H_

View File

@ -11,10 +11,15 @@
- [Script Parameters](#script-parameters) - [Script Parameters](#script-parameters)
- [Training Process](#training-process) - [Training Process](#training-process)
- [Training](#training) - [Training](#training)
- [running on Ascend](#running-on-ascend) - [Training on Ascend](#training-on-ascend)
- [Training on GPU](#training-on-gpu)
- [Distributed Training](#distributed-training) - [Distributed Training](#distributed-training)
- [Distributed training on Ascend](#distributed-training-on-ascend)
- [Distributed training on GPU](#distributed-training-on-gpu)
- [Evaluation Process](#evaluation-process) - [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation) - [Evaluation](#evaluation)
- [Evaluating on Ascend](#training-on-ascend)
- [Evaluating on GPU](#training-on-gpu)
- [Model Description](#model-description) - [Model Description](#model-description)
- [Performance](#performance) - [Performance](#performance)
- [Evaluation Performance](#evaluation-performance) - [Evaluation Performance](#evaluation-performance)
@ -36,16 +41,29 @@ Dataset used: [LUNA16](https://luna16.grand-challenge.org/)
- Description: The data is to automatically detect the location of nodules from volumetric CT images. 888 CT scans from LIDC-IDRI database are provided. The complete dataset is divided into 10 subsets that should be used for the 10-fold cross-validation. All subsets are available as compressed zip files. - Description: The data is to automatically detect the location of nodules from volumetric CT images. 888 CT scans from LIDC-IDRI database are provided. The complete dataset is divided into 10 subsets that should be used for the 10-fold cross-validation. All subsets are available as compressed zip files.
- Dataset size888 - Dataset size887
- Train878 images - Train877 images
- Test10 images - Test10 images(last 10 images in subset9 with lexicographical order)
- Data formatzip - Data formatzip
- NoteData will be processed in convert_nifti.py - NoteData will be processed in convert_nifti.py, and one of them will be ignored during data processing.
- Data Content Structure
```text
.
└─LUNA16
├── train
│ ├── image // contains 877 image files
| ├── seg // contains 877 seg files
├── val
│ ├── image // contains 10 image files
| ├── seg // contains 10 seg files
```
## [Environment Requirements](#contents) ## [Environment Requirements](#contents)
- HardwareAscend - HardwareAscend or GPU
- Prepare hardware environment with Ascend processor. - Prepare hardware environment with Ascend or GPU.
- Framework - Framework
- [MindSpore](https://www.mindspore.cn/install/en) - [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below - For more information, please check the resources below
@ -79,6 +97,25 @@ bash scripts/run_distribute_train.sh [RANK_TABLE_FILE] [DATA_PATH]
# run evaluation example # run evaluation example
python eval.py --data_path=/path/to/data/ --checkpoint_file_path=/path/to/checkpoint/ > eval.log 2>&1 & python eval.py --data_path=/path/to/data/ --checkpoint_file_path=/path/to/checkpoint/ > eval.log 2>&1 &
```
- Run on GPU
```shell
# enter scripts directory
cd scripts
# run training example(fp32)
bash ./run_standalone_train_gpu_fp32.sh [TRAINING_DATA_PATH]
# run training example(fp16)
bash ./run_standalone_train_gpu_fp16.sh [TRAINING_DATA_PATH]
# run distributed training example(fp32)
bash ./run_distribute_train_gpu_fp32.sh [TRAINING_DATA_PATH]
# run distributed training example(fp16)
bash ./run_distribute_train_gpu_fp16.sh [TRAINING_DATA_PATH]
# run evaluation example(fp32)
bash ./run_standalone_eval_gpu_fp32.sh [VALIDATING_DATA_PATH] [CHECKPOINT_FILE_PATH]
# run evaluation example(fp16)
bash ./run_standalone_eval_gpu_fp16.sh [VALIDATING_DATA_PATH] [CHECKPOINT_FILE_PATH]
``` ```
@ -123,9 +160,15 @@ If you want to run in modelarts, please check the official documentation of [mod
└─unet3d └─unet3d
├── README.md // descriptions about Unet3D ├── README.md // descriptions about Unet3D
├── scripts ├── scripts
│ ├──run_disribute_train.sh // shell script for distributed on Ascend │ ├──run_distribute_train.sh // shell script for distributed on Ascend
│ ├──run_standalone_train.sh // shell script for standalone on Ascend │ ├──run_standalone_train.sh // shell script for standalone on Ascend
│ ├──run_standalone_eval.sh // shell script for evaluation on Ascend │ ├──run_standalone_eval.sh // shell script for evaluation on Ascend
│ ├──run_distribute_train_gpu_fp32.sh // shell script for distributed on GPU fp32
│ ├──run_distribute_train_gpu_fp16.sh // shell script for distributed on GPU fp16
│ ├──run_standalone_train_gpu_fp32.sh // shell script for standalone on GPU fp32
│ ├──run_standalone_train_gpu_fp16.sh // shell script for standalone on GPU fp16
│ ├──run_standalone_eval_gpu_fp32.sh // shell script for evaluation on GPU fp32
│ ├──run_standalone_eval_gpu_fp16.sh // shell script for evaluation on GPU fp16
├── src ├── src
│ ├──dataset.py // creating dataset │ ├──dataset.py // creating dataset
│ ├──lr_schedule.py // learning rate scheduler │ ├──lr_schedule.py // learning rate scheduler
@ -177,7 +220,23 @@ Parameters for both training and evaluation can be set in config.py
### Training ### Training
#### running on Ascend #### Training on GPU
```shell
# enter scripts directory
cd scripts
# fp32
bash ./run_standalone_train_gpu_fp32.sh /path_prefix/LUNA16/train
# fp16
bash ./run_standalone_train_gpu_fp16.sh /path_prefix/LUNA16/train
```
The python command above will run in the background, you can view the results through the file `train.log`.
After training, you'll get some checkpoint files under the train_fp[32|16]/output/ckpt_0/ folder by default.
#### Training on Ascend
```shell ```shell
python train.py --data_path=/path/to/data/ > train.log 2>&1 & python train.py --data_path=/path/to/data/ > train.log 2>&1 &
@ -201,7 +260,25 @@ epoch time: 1180467.795 ms, per step time: 1380.664 ms
``` ```
#### Distributed Training ### Distributed Training
#### Distributed training on GPU(8P)
```shell
# enter scripts directory
cd scripts
# fp32
bash ./run_distribute_train_gpu_fp32.sh /path_prefix/LUNA16/train
# fp16
bash ./run_distribute_train_gpu_fp16.sh /path_prefix/LUNA16/train
```
The above shell script will run distribute training in the background. You can view the results through the file `/train_parallel_fp[32|16]/train.log`.
After training, you'll get some checkpoint files under the `train_parallel_fp[32|16]/output/ckpt_[X]/` folder by default.
#### Distributed training on Ascend
> Notes: > Notes:
> RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html) , and the device_ip can be got as [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). For large models like InceptionV4, it's better to export an external environment variable `export HCCL_CONNECT_TIMEOUT=600` to extend hccl connection checking time from the default 120 seconds to 600 seconds. Otherwise, the connection could be timeout since compiling time increases with the growth of model size. > RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html) , and the device_ip can be got as [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). For large models like InceptionV4, it's better to export an external environment variable `export HCCL_CONNECT_TIMEOUT=600` to extend hccl connection checking time from the default 120 seconds to 600 seconds. Otherwise, the connection could be timeout since compiling time increases with the growth of model size.
@ -235,6 +312,24 @@ epoch time: 140476.520 ms, per step time: 1312.865 ms
### Evaluation ### Evaluation
#### Evaluating on GPU
```shell
# enter scripts directory
cd ./script
# fp32, 1gpu
bash ./run_standalone_eval_gpu_fp32.sh /path_prefix/LUNA16/val /path_prefix/train_fp32/output/ckpt_0/Unet3d-10_877.ckpt
# fp16, 1gpu
bash ./run_standalone_eval_gpu_fp16.sh /path_prefix/LUNA16/val /path_prefix/train_fp16/output/ckpt_0/Unet3d-10_877.ckpt
# fp32, 8gpu
bash ./run_standalone_eval_gpu_fp32.sh /path_prefix/LUNA16/val /path_prefix/train_parallel_fp32/output/ckpt_0/Unet3d-10_110.ckpt
# fp16, 8gpu
bash ./run_standalone_eval_gpu_fp16.sh /path_prefix/LUNA16/val /path_prefix/train_parallel_fp16/output/ckpt_0/Unet3d-10_110.ckpt
```
#### Evaluating on Ascend
- evaluation on dataset when running on Ascend - evaluation on dataset when running on Ascend
Before running the command below, please check the checkpoint path used for evaluation. Please set the checkpoint path to be the absolute full path, e.g., "username/unet3d/Unet3d-10_110.ckpt". Before running the command below, please check the checkpoint path used for evaluation. Please set the checkpoint path to be the absolute full path, e.g., "username/unet3d/Unet3d-10_110.ckpt".
@ -259,33 +354,33 @@ eval average dice is 0.9502010010453671
#### Evaluation Performance #### Evaluation Performance
| Parameters | Ascend | | Parameters | Ascend | GPU |
| ------------------- | --------------------------------------------------------- | | ------------------- | --------------------------------------------------------- | ---------------------------------------------------- |
| Model Version | Unet3D | | Model Version | Unet3D | Unet3D |
| Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8 | | Resource | Ascend 910; CPU 2.60GHz, 192cores; Memory 755G; OS Euler2.8 | Nvidia V100 SXM2; CPU 1.526GHz; 72cores; Memory 42G; OS Ubuntu16|
| uploaded Date | 03/18/2021 (month/day/year) | | uploaded Date | 03/18/2021 (month/day/year) | 05/21/2021(month/day/year) |
| MindSpore Version | 1.2.0 | | MindSpore Version | 1.2.0 | 1.2.0 |
| Dataset | LUNA16 | | Dataset | LUNA16 | LUNA16 |
| Training Parameters | epoch = 10, batch_size = 1 | | Training Parameters | epoch = 10, batch_size = 1 | epoch = 10, batch_size = 1 |
| Optimizer | Adam | | Optimizer | Adam | Adam |
| Loss Function | SoftmaxCrossEntropyWithLogits | | Loss Function | SoftmaxCrossEntropyWithLogits | SoftmaxCrossEntropyWithLogits |
| Speed | 8pcs: 1795ms/step | | Speed | 8pcs: 1795ms/step | 8pcs: 1883ms/step |
| Total time | 8pcs: 0.62hours | | Total time | 8pcs: 0.62hours | 8pcs: 0.66hours |
| Parameters (M) | 34 | | Parameters (M) | 34 | 34 |
| Scripts | [unet3d script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/unet3d) | | Scripts | [unet3d script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/unet3d) |
#### Inference Performance #### Inference Performance
| Parameters | Ascend | | Parameters | Ascend | GPU |
| ------------------- | --------------------------- | | ------------------- | --------------------------- | --------------------------- |
| Model Version | Unet3D | | Model Version | Unet3D | Unet3D |
| Resource | Ascend 910; OS Euler2.8 | | Resource | Ascend 910; OS Euler2.8 | Nvidia V100 SXM2; OS Ubuntu16|
| Uploaded Date | 03/18/2021 (month/day/year) | | Uploaded Date | 03/18/2021 (month/day/year) | 05/21/2021 (month/day/year) |
| MindSpore Version | 1.2.0 | | MindSpore Version | 1.2.0 | 1.2.0 |
| Dataset | LUNA16 | | Dataset | LUNA16 | LUNA16 |
| batch_size | 1 | | batch_size | 1 | 1 |
| Dice | dice = 0.9502 | | Dice | dice = 0.9502 | dice = 0.9601 |
| Model for inference | 56M(.ckpt file) | | Model for inference | 56M(.ckpt file) | 56M(.ckpt file) |
# [Description of Random Situation](#contents) # [Description of Random Situation](#contents)

View File

@ -1,4 +1,5 @@
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing) # Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
enable_fp16_gpu: False
enable_modelarts: False enable_modelarts: False
# Url for modelarts # Url for modelarts
data_url: "" data_url: ""
@ -41,6 +42,7 @@ file_format: ""
--- ---
# Help description for each configuration # Help description for each configuration
enable_modelarts: 'Whether training on modelarts, default: False' enable_modelarts: 'Whether training on modelarts, default: False'
enable_fp16_gpu: 'Whether training on gpu with fp16, default: False'
data_url: 'Dataset url for obs' data_url: 'Dataset url for obs'
train_url: 'Training output url for obs' train_url: 'Training output url for obs'
checkpoint_url: 'The location of checkpoint for obs' checkpoint_url: 'The location of checkpoint for obs'

View File

@ -19,13 +19,13 @@ from mindspore import dtype as mstype
from mindspore import Model, context, Tensor from mindspore import Model, context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.dataset import create_dataset from src.dataset import create_dataset
from src.unet3d_model import UNet3d from src.unet3d_model import UNet3d, UNet3d_
from src.utils import create_sliding_window, CalculateDice from src.utils import create_sliding_window, CalculateDice
from src.model_utils.config import config from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper from src.model_utils.moxing_adapter import moxing_wrapper
device_id = int(os.getenv('DEVICE_ID')) device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id) context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, save_graphs=False, device_id=device_id)
@moxing_wrapper() @moxing_wrapper()
def test_net(data_path, ckpt_path): def test_net(data_path, ckpt_path):
@ -35,7 +35,10 @@ def test_net(data_path, ckpt_path):
eval_data_size = eval_dataset.get_dataset_size() eval_data_size = eval_dataset.get_dataset_size()
print("train dataset length is:", eval_data_size) print("train dataset length is:", eval_data_size)
if config.device_target == 'Ascend':
network = UNet3d() network = UNet3d()
else:
network = UNet3d_()
network.set_train(False) network.set_train(False)
param_dict = load_checkpoint(ckpt_path) param_dict = load_checkpoint(ckpt_path)
load_param_into_net(network, param_dict) load_param_into_net(network, param_dict)

View File

@ -0,0 +1,59 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# -ne 1 ]
then
echo "Usage: sh run_distribute_train_gpu.sh [DATA_PATH]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
PATH1=$(get_real_path $1)
echo $PATH1
if [ ! -d $PATH1 ]
then
echo "error: IMAGE_PATH=$PATH1 is not a file"
exit 1
fi
ulimit -u unlimited
export DEVICE_NUM=8
export RANK_SIZE=8
if [ -d "train_parallel_fp16" ];
then
rm -rf ./train_parallel_fp16
fi
rm -rf ./train_parallel_fp16
mkdir ./train_parallel_fp16
cp ../*.py ./train_parallel_fp16
cp *.sh ./train_parallel_fp16
cp ../*.yaml ./train_parallel_fp16
cp -r ../src ./train_parallel_fp16
cd ./train_parallel_fp16 || exit
echo "start distributed training with $DEVICE_NUM GPUs."
env > env.log
mpirun --allow-run-as-root -n $DEVICE_NUM python train.py --run_distribute=True --data_path=$PATH1 --output_path './output' --device_target='GPU' --enable_fp16_gpu=True --checkpoint_path='./' > train.log 2>&1 &
cd ..

View File

@ -0,0 +1,59 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# -ne 1 ]
then
echo "Usage: sh run_distribute_train_gpu.sh [DATA_PATH]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
PATH1=$(get_real_path $1)
echo $PATH1
if [ ! -d $PATH1 ]
then
echo "error: IMAGE_PATH=$PATH1 is not a file"
exit 1
fi
ulimit -u unlimited
export DEVICE_NUM=8
export RANK_SIZE=8
if [ -d "train_parallel_fp32" ];
then
rm -rf ./train_parallel_fp32
fi
rm -rf ./train_parallel_fp32
mkdir ./train_parallel_fp32
cp ../*.py ./train_parallel_fp32
cp *.sh ./train_parallel_fp32
cp ../*.yaml ./train_parallel_fp32
cp -r ../src ./train_parallel_fp32
cd ./train_parallel_fp32 || exit
echo "start distributed training with $DEVICE_NUM GPUs."
env > env.log
mpirun --allow-run-as-root -n $DEVICE_NUM python train.py --run_distribute=True --data_path=$PATH1 --output_path './output' --device_target='GPU' --checkpoint_path='./' > train.log 2>&1 &
cd ..

View File

@ -0,0 +1,76 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# != 2 ]
then
echo "=============================================================================================================="
echo "Please run the script as: "
echo "bash scripts/run_standalone_eval_gpu_fp16.sh [DATA_PATH] [CHECKPOINT]"
echo "for example: bash run_standalone_eval_gpu_fp16.sh /path/to/data/ /path/to/checkpoint/"
echo "=============================================================================================================="
fi
if [ $# != 2 ]
then
echo "Usage: sh run_standalone_eval_gpu_fp16.sh [DATA_PATH] [CHECKPOINT_PATH]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
PATH1=$(get_real_path $1)
CHECKPOINT_FILE_PATH=$(get_real_path $2)
echo $PATH1
echo $CHECKPOINT_FILE_PATH
if [ ! -d $PATH1 ]
then
echo "error: PATH1=$PATH1 is not a path"
exit 1
fi
if [ ! -f $CHECKPOINT_FILE_PATH ]
then
echo "error: CHECKPOINT_FILE_PATH=$CHECKPOINT_FILE_PATH is not a file"
exit 1
fi
ulimit -u unlimited
export DEVICE_NUM=1
export RANK_SIZE=$DEVICE_NUM
export DEVICE_ID=0
export RANK_ID=0
if [ -d "eval_fp16" ];
then
rm -rf ./eval_fp16
fi
mkdir ./eval_fp16
cp ../*.py ./eval_fp16
cp *.sh ./eval_fp16
cp ../*.yaml ./eval_fp16
cp -r ../src ./eval_fp16
cd ./eval_fp16 || exit
echo "start eval for checkpoint file: ${CHECKPOINT_FILE_PATH}"
python eval.py --data_path=$PATH1 --checkpoint_file_path=$CHECKPOINT_FILE_PATH --device_target='GPU' > eval.log 2>&1 &
echo "end eval for checkpoint file: ${CHECKPOINT_FILE_PATH}"
cd ..

View File

@ -0,0 +1,76 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# != 2 ]
then
echo "=============================================================================================================="
echo "Please run the script as: "
echo "bash scripts/run_standalone_eval_gpu.sh [DATA_PATH] [CHECKPOINT]"
echo "for example: bash run_standalone_eval_gpu.sh /path/to/data/ /path/to/checkpoint/"
echo "=============================================================================================================="
fi
if [ $# != 2 ]
then
echo "Usage: sh run_standalone_eval_gpu.sh [DATA_PATH] [CHECKPOINT_PATH]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
PATH1=$(get_real_path $1)
CHECKPOINT_FILE_PATH=$(get_real_path $2)
echo $PATH1
echo $CHECKPOINT_FILE_PATH
if [ ! -d $PATH1 ]
then
echo "error: PATH1=$PATH1 is not a path"
exit 1
fi
if [ ! -f $CHECKPOINT_FILE_PATH ]
then
echo "error: CHECKPOINT_FILE_PATH=$CHECKPOINT_FILE_PATH is not a file"
exit 1
fi
ulimit -u unlimited
export DEVICE_NUM=1
export RANK_SIZE=$DEVICE_NUM
export DEVICE_ID=0
export RANK_ID=0
if [ -d "eval_fp32" ];
then
rm -rf ./eval_fp32
fi
mkdir ./eval_fp32
cp ../*.py ./eval_fp32
cp *.sh ./eval_fp32
cp ../*.yaml ./eval_fp32
cp -r ../src ./eval_fp32
cd ./eval_fp32 || exit
echo "start eval for checkpoint file: ${CHECKPOINT_FILE_PATH}"
python eval.py --data_path=$PATH1 --checkpoint_file_path=$CHECKPOINT_FILE_PATH --device_target='GPU' > eval.log 2>&1 &
echo "end eval for checkpoint file: ${CHECKPOINT_FILE_PATH}"
cd ..

View File

@ -0,0 +1,60 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# -ne 1 ]
then
echo "Usage: sh run_distribute_train_gpu_fp16.sh [DATA_PATH]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
PATH1=$(get_real_path $1)
echo $PATH1
if [ ! -d $PATH1 ]
then
echo "error: IMAGE_PATH=$PATH1 is not a file"
exit 1
fi
ulimit -u unlimited
export DEVICE_NUM=1
export DEVICE_ID=0
export RANK_ID=0
export RANK_SIZE=1
if [ -d "train_fp16" ];
then
rm -rf ./train_fp16
fi
rm -rf ./train_fp16
mkdir ./train_fp16
cp ../*.py ./train_fp16
cp *.sh ./train_fp16
cp ../*.yaml ./train_fp16
cp -r ../src ./train_fp16
cd ./train_fp16 || exit
echo "start training for device $DEVICE_ID"
env > env.log
python train.py --data_path=$PATH1 --output_path './output' --device_target='GPU' --checkpoint_path='./' --enable_fp16_gpu=True > train.log 2>&1 &
cd ..

View File

@ -0,0 +1,60 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# -ne 1 ]
then
echo "Usage: sh run_distribute_train_gpu_fp32.sh [DATA_PATH]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
PATH1=$(get_real_path $1)
echo $PATH1
if [ ! -d $PATH1 ]
then
echo "error: IMAGE_PATH=$PATH1 is not a file"
exit 1
fi
ulimit -u unlimited
export DEVICE_NUM=1
export DEVICE_ID=0
export RANK_ID=0
export RANK_SIZE=1
if [ -d "train_fp32" ];
then
rm -rf ./train_fp32
fi
rm -rf ./train_fp32
mkdir ./train_fp32
cp ../*.py ./train_fp32
cp *.sh ./train_fp32
cp ../*.yaml ./train_fp32
cp -r ../src ./train_fp32
cd ./train_fp32 || exit
echo "start training for device $DEVICE_ID"
env > env.log
python train.py --data_path=$PATH1 --output_path './output' --device_target='GPU' --checkpoint_path='./' > train.log 2>&1 &
cd ..

View File

@ -117,9 +117,9 @@ def get_config():
help="Config file path") help="Config file path")
path_args, _ = parser.parse_known_args() path_args, _ = parser.parse_known_args()
default, helper = parse_yaml(path_args.config_path) default, helper = parse_yaml(path_args.config_path)
pprint(default)
args = parse_cli_to_yaml(parser, default, helper, path_args.config_path) args = parse_cli_to_yaml(parser, default, helper, path_args.config_path)
final_config = merge(args, default) final_config = merge(args, default)
pprint(final_config)
return Config(final_config) return Config(final_config)
config = get_config() config = get_config()

View File

@ -19,6 +19,48 @@ from mindspore.ops import operations as P
from src.unet3d_parts import Down, Up from src.unet3d_parts import Down, Up
from src.model_utils.config import config from src.model_utils.config import config
class UNet3d_(nn.Cell):
"""
UNet3d_ support fp32 and fp16(amp) training on GPU.
"""
def __init__(self):
super(UNet3d_, self).__init__()
self.n_channels = config.in_channels
self.n_classes = config.num_classes
# down
self.down1 = Down(in_channel=self.n_channels, out_channel=16, dtype=mstype.float32)
self.down2 = Down(in_channel=16, out_channel=32, dtype=mstype.float32)
self.down3 = Down(in_channel=32, out_channel=64, dtype=mstype.float32)
self.down4 = Down(in_channel=64, out_channel=128, dtype=mstype.float32)
self.down5 = Down(in_channel=128, out_channel=256, stride=1, kernel_size=(1, 1, 1), \
dtype=mstype.float32)
# up
self.up1 = Up(in_channel=256, down_in_channel=128, out_channel=64, \
dtype=mstype.float32)
self.up2 = Up(in_channel=64, down_in_channel=64, out_channel=32, \
dtype=mstype.float32)
self.up3 = Up(in_channel=32, down_in_channel=32, out_channel=16, \
dtype=mstype.float32)
self.up4 = Up(in_channel=16, down_in_channel=16, out_channel=self.n_classes, \
dtype=mstype.float32, is_output=True)
def construct(self, input_data):
x1 = self.down1(input_data)
x2 = self.down2(x1)
x3 = self.down3(x2)
x4 = self.down4(x3)
x5 = self.down5(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
return x
class UNet3d(nn.Cell): class UNet3d(nn.Cell):
def __init__(self): def __init__(self):
super(UNet3d, self).__init__() super(UNet3d, self).__init__()

View File

@ -19,20 +19,23 @@ import mindspore.nn as nn
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
from mindspore import Tensor, Model, context from mindspore import Tensor, Model, context
from mindspore.context import ParallelMode from mindspore.context import ParallelMode
from mindspore.communication.management import init from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.loss_scale_manager import FixedLossScaleManager
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
from src.dataset import create_dataset from src.dataset import create_dataset
from src.unet3d_model import UNet3d from src.unet3d_model import UNet3d, UNet3d_
from src.lr_schedule import dynamic_lr from src.lr_schedule import dynamic_lr
from src.loss import SoftmaxCrossEntropyWithLogits from src.loss import SoftmaxCrossEntropyWithLogits
from src.model_utils.config import config from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper from src.model_utils.moxing_adapter import moxing_wrapper
from src.model_utils.device_adapter import get_device_id, get_device_num from src.model_utils.device_adapter import get_device_id, get_device_num
if config.device_target == 'Ascend':
device_id = int(os.getenv('DEVICE_ID')) device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, \ context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, save_graphs=False, \
device_id=device_id) device_id=device_id)
else:
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, save_graphs=False)
mindspore.set_seed(1) mindspore.set_seed(1)
@moxing_wrapper() @moxing_wrapper()
@ -42,8 +45,12 @@ def train_net(data_path,
seg_dir = data_path + "/seg/" seg_dir = data_path + "/seg/"
if run_distribute: if run_distribute:
init() init()
if config.device_target == 'Ascend':
rank_id = get_device_id() rank_id = get_device_id()
rank_size = get_device_num() rank_size = get_device_num()
else:
rank_id = get_rank()
rank_size = get_group_size()
parallel_mode = ParallelMode.DATA_PARALLEL parallel_mode = ParallelMode.DATA_PARALLEL
context.set_auto_parallel_context(parallel_mode=parallel_mode, context.set_auto_parallel_context(parallel_mode=parallel_mode,
device_num=rank_size, device_num=rank_size,
@ -56,7 +63,10 @@ def train_net(data_path,
train_data_size = train_dataset.get_dataset_size() train_data_size = train_dataset.get_dataset_size()
print("train dataset length is:", train_data_size) print("train dataset length is:", train_data_size)
if config.device_target == 'Ascend':
network = UNet3d() network = UNet3d()
else:
network = UNet3d_()
loss = SoftmaxCrossEntropyWithLogits() loss = SoftmaxCrossEntropyWithLogits()
lr = Tensor(dynamic_lr(config, train_data_size), mstype.float32) lr = Tensor(dynamic_lr(config, train_data_size), mstype.float32)
@ -64,6 +74,9 @@ def train_net(data_path,
scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) scale_manager = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
network.set_train() network.set_train()
if config.device_target == 'GPU' and config.enable_fp16_gpu:
model = Model(network, loss_fn=loss, optimizer=optimizer, loss_scale_manager=scale_manager, amp_level='O2')
else:
model = Model(network, loss_fn=loss, optimizer=optimizer, loss_scale_manager=scale_manager) model = Model(network, loss_fn=loss, optimizer=optimizer, loss_scale_manager=scale_manager)
time_cb = TimeMonitor(data_size=train_data_size) time_cb = TimeMonitor(data_size=train_data_size)
@ -72,7 +85,7 @@ def train_net(data_path,
keep_checkpoint_max=config.keep_checkpoint_max) keep_checkpoint_max=config.keep_checkpoint_max)
ckpt_save_dir = os.path.join(config.output_path, config.checkpoint_path) ckpt_save_dir = os.path.join(config.output_path, config.checkpoint_path)
ckpoint_cb = ModelCheckpoint(prefix='Unet3d', ckpoint_cb = ModelCheckpoint(prefix='Unet3d',
directory=ckpt_save_dir+'./ckpt_{}/'.format(device_id), directory=ckpt_save_dir+'./ckpt_{}/'.format(rank_id),
config=ckpt_config) config=ckpt_config)
callbacks_list = [loss_cb, time_cb, ckpoint_cb] callbacks_list = [loss_cb, time_cb, ckpoint_cb]
print("============== Starting Training ==============") print("============== Starting Training ==============")

View File

@ -0,0 +1,61 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops.operations import _grad_ops as G
class NetPReLUGrad(nn.Cell):
def __init__(self):
super(NetPReLUGrad, self).__init__()
self.prelu_grad = G.PReLUGrad()
def construct(self, dout, x, w):
return self.prelu_grad(dout, x, w)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_prelu_grad_fp32_channel_shared():
dout = Tensor(np.ones(shape=[2, 2, 2, 3]).astype(np.float32))
x = Tensor(np.arange(-5, 19).reshape(2, 2, 2, 3).astype(np.float32))
w = Tensor(np.array([-0.5]).astype(np.float32))
expect_dx = np.array([[[[-0.5000, -0.5000, -0.5000],
[-0.5000, -0.5000, -0.5000]],
[[1.0000, 1.0000, 1.0000],
[1.0000, 1.0000, 1.0000]]],
[[[1.0000, 1.0000, 1.0000],
[1.0000, 1.0000, 1.0000]],
[[1.0000, 1.0000, 1.0000],
[1.0000, 1.0000, 1.0000]]]]).astype(np.float32)
expect_dw = np.array([-15.]).astype(np.float32)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
prelu_grad = NetPReLUGrad()
dx, dw = prelu_grad(dout, x, w)
assert (dx.asnumpy() == expect_dx).all()
assert (dw.asnumpy() == expect_dw).all()
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
prelu_grad = NetPReLUGrad()
dx, dw = prelu_grad(dout, x, w)
assert (dx.asnumpy() == expect_dx).all()
assert (dw.asnumpy() == expect_dw).all()

View File

@ -69,6 +69,30 @@ def test_slice_4d():
assert (output_ms.asnumpy() == output_np).all() assert (output_ms.asnumpy() == output_np).all()
class Slice5DNet(nn.Cell):
def __init__(self):
super(Slice5DNet, self).__init__()
self.slice = P.Slice()
def construct(self, x):
return self.slice(x, (0, 11, 1, 2, 3), (32, 7, 14, 10, 221))
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_slice_5d():
x_np = np.random.randn(32, 32, 24, 224, 224).astype(np.float32)
output_np = x_np[:, 11:18, 1:15, 2:12, 3:224]
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x_ms = Tensor(x_np)
net = Slice5DNet()
output_ms = net(x_ms)
assert (output_ms.asnumpy() == output_np).all()
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard