!5095 Adding Float tensor support for CutMixBatch

Merge pull request !5095 from MahdiRahmaniHanzaki/cutmix-fix
This commit is contained in:
mindspore-ci-bot 2020-08-25 10:53:58 +08:00 committed by Gitee
commit 957126375b
5 changed files with 42 additions and 17 deletions

View File

@ -50,7 +50,7 @@ void CutMixBatchOp::GetCropBox(int height, int width, float lam, int *x, int *y,
Status CutMixBatchOp::Compute(const TensorRow &input, TensorRow *output) {
if (input.size() < 2) {
RETURN_STATUS_UNEXPECTED("Both images and labels columns are required for this operation");
RETURN_STATUS_UNEXPECTED("Both images and labels columns are required for this operation.");
}
std::vector<std::shared_ptr<Tensor>> images;
@ -59,10 +59,10 @@ Status CutMixBatchOp::Compute(const TensorRow &input, TensorRow *output) {
// Check inputs
if (image_shape.size() != 4 || image_shape[0] != label_shape[0]) {
RETURN_STATUS_UNEXPECTED("You must make sure images are HWC or CHW and batch before calling CutMixBatch.");
RETURN_STATUS_UNEXPECTED("You must make sure images are HWC or CHW and batched before calling CutMixBatch.");
}
if (label_shape.size() != 2) {
RETURN_STATUS_UNEXPECTED("CutMixBatch: Label's must be in one-hot format and in a batch");
RETURN_STATUS_UNEXPECTED("CutMixBatch: Label's must be in one-hot format and in a batch.");
}
if ((image_shape[1] != 1 && image_shape[1] != 3) && image_batch_format_ == ImageBatchFormat::kNCHW) {
RETURN_STATUS_UNEXPECTED("CutMixBatch: Image doesn't match the given image format.");

View File

@ -415,9 +415,7 @@ Status MaskWithTensor(const std::shared_ptr<Tensor> &sub_mat, std::shared_ptr<Te
for (int i = 0; i < crop_width; i++) {
for (int j = 0; j < crop_height; j++) {
for (int c = 0; c < number_of_channels; c++) {
uint8_t pixel_value;
RETURN_IF_NOT_OK(sub_mat->GetItemAt(&pixel_value, {j, i, c}));
RETURN_IF_NOT_OK((*input)->SetItemAt({y + j, x + i, c}, pixel_value));
RETURN_IF_NOT_OK(CopyTensorValue(sub_mat, input, {j, i, c}, {y + j, x + i, c}));
}
}
}
@ -432,9 +430,7 @@ Status MaskWithTensor(const std::shared_ptr<Tensor> &sub_mat, std::shared_ptr<Te
for (int i = 0; i < crop_width; i++) {
for (int j = 0; j < crop_height; j++) {
for (int c = 0; c < number_of_channels; c++) {
uint8_t pixel_value;
RETURN_IF_NOT_OK(sub_mat->GetItemAt(&pixel_value, {c, j, i}));
RETURN_IF_NOT_OK((*input)->SetItemAt({c, y + j, x + i}, pixel_value));
RETURN_IF_NOT_OK(CopyTensorValue(sub_mat, input, {c, j, i}, {c, y + j, x + i}));
}
}
}
@ -447,9 +443,7 @@ Status MaskWithTensor(const std::shared_ptr<Tensor> &sub_mat, std::shared_ptr<Te
}
for (int i = 0; i < crop_width; i++) {
for (int j = 0; j < crop_height; j++) {
uint8_t pixel_value;
RETURN_IF_NOT_OK(sub_mat->GetItemAt(&pixel_value, {j, i}));
RETURN_IF_NOT_OK((*input)->SetItemAt({y + j, x + i}, pixel_value));
RETURN_IF_NOT_OK(CopyTensorValue(sub_mat, input, {j, i}, {y + j, x + i}));
}
}
} else {
@ -458,6 +452,24 @@ Status MaskWithTensor(const std::shared_ptr<Tensor> &sub_mat, std::shared_ptr<Te
return Status::OK();
}
Status CopyTensorValue(const std::shared_ptr<Tensor> &source_tensor, std::shared_ptr<Tensor> *dest_tensor,
const std::vector<int64_t> &source_indx, const std::vector<int64_t> &dest_indx) {
if (source_tensor->type() != (*dest_tensor)->type())
RETURN_STATUS_UNEXPECTED("CopyTensorValue: source and destination tensor must have the same type.");
if (source_tensor->type() == DataType::DE_UINT8) {
uint8_t pixel_value;
RETURN_IF_NOT_OK(source_tensor->GetItemAt(&pixel_value, source_indx));
RETURN_IF_NOT_OK((*dest_tensor)->SetItemAt(dest_indx, pixel_value));
} else if (source_tensor->type() == DataType::DE_FLOAT32) {
float pixel_value;
RETURN_IF_NOT_OK(source_tensor->GetItemAt(&pixel_value, source_indx));
RETURN_IF_NOT_OK((*dest_tensor)->SetItemAt(dest_indx, pixel_value));
} else {
RETURN_STATUS_UNEXPECTED("CopyTensorValue: Tensor type is not supported. Tensor type must be float32 or uint8.");
}
return Status::OK();
}
Status SwapRedAndBlue(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output) {
try {
std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input));

View File

@ -133,6 +133,17 @@ Status HwcToChw(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output);
Status MaskWithTensor(const std::shared_ptr<Tensor> &sub_mat, std::shared_ptr<Tensor> *input, int x, int y, int width,
int height, ImageFormat image_format);
/// \brief Copies a value from a source tensor into a destination tensor
/// \note This is meant for images and therefore only works if tensor is uint8 or float32
/// \param[in] source_tensor The tensor we take the value from
/// \param[in] dest_tensor The pointer to the tensor we want to copy the value to
/// \param[in] source_indx index of the value in the source tensor
/// \param[in] dest_indx index of the value in the destination tensor
/// \param[out] dest_tensor Copies the value to the given dest_tensor and returns it
/// @return Status ok/error
Status CopyTensorValue(const std::shared_ptr<Tensor> &source_tensor, std::shared_ptr<Tensor> *dest_tensor,
const std::vector<int64_t> &source_indx, const std::vector<int64_t> &dest_indx);
/// \brief Swap the red and blue pixels (RGB <-> BGR)
/// \param input: Tensor of shape <H,W,3> and any OpenCv compatible type, see CVTensor.
/// \param output: Swapped image of same shape and type

View File

@ -29,7 +29,7 @@ MixUpBatchOp::MixUpBatchOp(float alpha) : alpha_(alpha) { rnd_.seed(GetSeed());
Status MixUpBatchOp::Compute(const TensorRow &input, TensorRow *output) {
if (input.size() < 2) {
RETURN_STATUS_UNEXPECTED("Both images and labels columns are required for this operation");
RETURN_STATUS_UNEXPECTED("Both images and labels columns are required for this operation.");
}
std::vector<std::shared_ptr<CVTensor>> images;
@ -38,13 +38,13 @@ Status MixUpBatchOp::Compute(const TensorRow &input, TensorRow *output) {
// Check inputs
if (image_shape.size() != 4 || image_shape[0] != label_shape[0]) {
RETURN_STATUS_UNEXPECTED("You must make sure images are HWC or CHW and batch before calling MixUpBatch");
RETURN_STATUS_UNEXPECTED("You must make sure images are HWC or CHW and batched before calling MixUpBatch.");
}
if (label_shape.size() != 2) {
RETURN_STATUS_UNEXPECTED("MixUpBatch: Label's must be in one-hot format and in a batch");
RETURN_STATUS_UNEXPECTED("MixUpBatch: Label's must be in one-hot format and in a batch.");
}
if ((image_shape[1] != 1 && image_shape[1] != 3) && (image_shape[3] != 1 && image_shape[3] != 3)) {
RETURN_STATUS_UNEXPECTED("MixUpBatch: Images must be in the shape of HWC or CHW");
RETURN_STATUS_UNEXPECTED("MixUpBatch: Images must be in the shape of HWC or CHW.");
}
// Move images into a vector of CVTensors

View File

@ -76,7 +76,7 @@ def test_cutmix_batch_success1(plot=False):
def test_cutmix_batch_success2(plot=False):
"""
Test CutMixBatch op with default values for alpha and prob on a batch of HWC images
Test CutMixBatch op with default values for alpha and prob on a batch of rescaled HWC images
"""
logger.info("test_cutmix_batch_success2")
@ -95,6 +95,8 @@ def test_cutmix_batch_success2(plot=False):
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=10)
data1 = data1.map(input_columns=["label"], operations=one_hot_op)
rescale_op = vision.Rescale((1.0/255.0), 0.0)
data1 = data1.map(input_columns=["image"], operations=rescale_op)
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NHWC)
data1 = data1.batch(5, drop_remainder=True)
data1 = data1.map(input_columns=["image", "label"], operations=cutmix_batch_op)