!27653 [Dataset][DOC] Fix dataset vision c_transforms doc problem

Merge pull request !27653 from xiefangqi/code_docs_md_transforms_2_round
This commit is contained in:
i-robot 2021-12-14 07:52:26 +00:00 committed by Gitee
commit 944bdacd92
1 changed files with 7 additions and 7 deletions

View File

@ -224,11 +224,11 @@ class AutoAugment(ImageTensorOperation):
class AutoContrast(ImageTensorOperation):
"""
Apply automatic contrast on input image. This operator calculates histogram of image, reassign cutoff percent
of lightest pixels from histogram to 255, and reassign cutoff percent of darkest pixels from histogram to 0.
of the lightest pixels from histogram to 255, and reassign cutoff percent of the darkest pixels from histogram to 0.
Args:
cutoff (float, optional): Percent of lightest and darkest pixels to cut off from
the histogram of input image. the value must be in the range [0.0, 50.0) (default=0.0).
the histogram of input image. The value must be in the range [0.0, 50.0) (default=0.0).
ignore (Union[int, sequence], optional): The background pixel values to ignore (default=None).
Examples:
@ -805,9 +805,9 @@ class RandomAffine(ImageTensorOperation):
ValueError: If shear is a number but is not positive.
TypeError: If `degrees` is not a number or a list or a tuple.
If `degrees` is a list or tuple, its length is not 2.
TypeError: If translate is specified but is not list or a tuple of length 2 or 4.
TypeError: If scale is not a list or tuple of length 2.
TypeError: If shear is not a list or tuple of length 2 or 4.
TypeError: If translate is specified but is not a list or a tuple of length 2 or 4.
TypeError: If scale is not a list or a tuple of length 2.
TypeError: If shear is not a list or a tuple of length 2 or 4.
TypeError: If fill_value is not a single integer or a 3-tuple.
Examples:
@ -1556,7 +1556,7 @@ class RandomSelectSubpolicy(ImageTensorOperation):
Choose a random sub-policy from a policy list to be applied on the input image.
Args:
policy (list(list(tuple(TensorOp, prob (float)))): List of sub-policies to choose from.
policy (list(list(tuple(TensorOp, prob (float))))): List of sub-policies to choose from.
A sub-policy is a list of tuples (op, prob), where op is a TensorOp operation and prob is the probability
that this op will be applied, and the prob values must be in range [0, 1]. Once a sub-policy is selected,
each op within the sub-policy with be applied in sequence according to its probability.
@ -1598,7 +1598,7 @@ class RandomSharpness(ImageTensorOperation):
(min, max) format. If min=max, then it is a single fixed magnitude operation (default = (0.1, 1.9)).
Raises:
TypeError : If `degrees` is not a list or tuple.
TypeError : If `degrees` is not a list or a tuple.
ValueError: If `degrees` is negative.
ValueError: If `degrees` is in (max, min) format instead of (min, max).