forked from mindspore-Ecosystem/mindspore
Support float64 for CPU OP, including arithmetic, reshape, scatter_nd_update, select. And Fix floor.cc.
This commit is contained in:
parent
0686f690e7
commit
92aee7c6fe
|
@ -64,24 +64,80 @@ class ArithmeticCPUKernel : public CPUKernel {
|
|||
std::vector<size_t> output_element_num_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL_T(Sub, KernelAttr(), ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(Sub, KernelAttr(), ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(Sub, KernelAttr(), ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(Pow, KernelAttr(), ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(Pow, KernelAttr(), ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(Pow, KernelAttr(), ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(RealDiv, KernelAttr(), ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(RealDiv, KernelAttr(), ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(RealDiv, KernelAttr(), ArithmeticCPUKernel, float16);
|
||||
MS_REG_CPU_KERNEL_T(RealDiv, KernelAttr(), ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(Div, KernelAttr(), ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(Div, KernelAttr(), ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(Div, KernelAttr(), ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(Mul, KernelAttr(), ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(Mul, KernelAttr(), ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
FloorDiv, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
Add, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Add, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Add, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Add, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Sub, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Sub, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Sub, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Sub, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Mul, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Mul, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Mul, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Mul, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Div, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Div, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Div, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Div, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Pow, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Pow, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Pow, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Pow, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
RealDiv, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
RealDiv,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
RealDiv, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
RealDiv,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
FloorDiv, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticCPUKernel, int);
|
||||
|
@ -89,6 +145,13 @@ MS_REG_CPU_KERNEL_T(
|
|||
FloorDiv,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
FloorDiv, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
FloorDiv,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Mod, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticCPUKernel, int);
|
||||
|
@ -103,7 +166,7 @@ MS_REG_CPU_KERNEL_T(
|
|||
ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
FloorMod, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticCPUKernel, int);
|
||||
ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
FloorMod,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
|
@ -114,10 +177,18 @@ MS_REG_CPU_KERNEL_T(
|
|||
ArithmeticCPUKernel, float16);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
AssignAdd, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticCPUKernel, int);
|
||||
ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
AssignAdd,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
AssignAdd, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
AssignAdd,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
SquaredDifference,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
|
@ -130,10 +201,18 @@ MS_REG_CPU_KERNEL_T(
|
|||
SquaredDifference,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
SquaredDifference,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Atan2,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Atan2,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticCPUKernel, double);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -70,6 +70,9 @@ MS_REG_CPU_KERNEL_T(
|
|||
MS_REG_CPU_KERNEL_T(
|
||||
Less, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Less, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Equal, KernelAttr().AddInputAttr(kNumberTypeBool).AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, bool);
|
||||
|
@ -146,6 +149,10 @@ MS_REG_CPU_KERNEL_T(
|
|||
Greater,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Greater,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
Greater, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, int64_t);
|
||||
|
@ -161,6 +168,10 @@ MS_REG_CPU_KERNEL_T(
|
|||
GreaterEqual,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
GreaterEqual,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
LessEqual, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, int);
|
||||
|
@ -171,6 +182,10 @@ MS_REG_CPU_KERNEL_T(
|
|||
LessEqual,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
LessEqual,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
LogicalAnd, KernelAttr().AddInputAttr(kNumberTypeBool).AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticLogicCPUKernel, bool);
|
||||
|
|
|
@ -279,8 +279,10 @@ bool ArithmeticSelfCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inpu
|
|||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
CHECK_KERNEL_INPUTS_NUM(inputs.size(), kInputsNum, kernel_name_);
|
||||
CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kOutputsNum, kernel_name_);
|
||||
if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat16 || dtype_ == kNumberTypeFloat64) {
|
||||
if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat16) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat64) {
|
||||
LaunchKernel<double>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt32 || dtype_ == kNumberTypeInt16) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt64) {
|
||||
|
|
|
@ -42,7 +42,6 @@ class ArithmeticSelfCPUKernel : public CPUKernel {
|
|||
void LaunchLogicalNot(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) const;
|
||||
|
||||
TypeId dtype_{kTypeUnknown};
|
||||
TypeId target_dtype_{kTypeUnknown};
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
|
@ -59,8 +58,14 @@ MS_REG_CPU_KERNEL(Square, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputA
|
|||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Square, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Square, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Square, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Neg, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Neg, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Neg, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Neg, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
|
@ -69,48 +74,84 @@ MS_REG_CPU_KERNEL(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOu
|
|||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(ZerosLike, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(OnesLike, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(OnesLike, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(OnesLike, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Sign, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Sign, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Sign, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Floor, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Floor, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Rint, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Rint, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Round, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Round, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Reciprocal, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Reciprocal, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(GeLU, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(LogicalNot, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Asin, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Asin, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(ACos, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(ACos, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Atan, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Atan, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Sin, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Sin, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Cos, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Cos, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Tan, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Tan, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Sinh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Sinh, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Cosh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Cosh, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Asinh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Asinh, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Acosh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Acosh, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Atanh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Atanh, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ArithmeticSelfCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(Identity, KernelAttr().AddInputAttr(kNumberTypeUInt64).AddOutputAttr(kNumberTypeUInt64),
|
||||
IdentityCPUKernel, uint64_t);
|
||||
|
|
|
@ -222,15 +222,22 @@ void EltWiseGradCPUKernel<T>::SoftplusGrad(const T *input1, const T *input2, T *
|
|||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
kernel_name_ = AnfAlgo::GetCNodeName(kernel_node);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool EltWiseGradCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
void EltWiseGradCPUKernel<T>::InitComputeFunc() {
|
||||
if constexpr (std::is_same_v<T, double>) {
|
||||
static const std::map<std::string,
|
||||
std::function<void(EltWiseGradCPUKernel *, const T *, const T *, T *, size_t, size_t)>>
|
||||
elt_map{{prim::kPrimSqrtGrad->name(), &EltWiseGradCPUKernel<T>::SqrtGrad},
|
||||
{prim::kPrimGeLUGrad->name(), &EltWiseGradCPUKernel<T>::GeluGrad},
|
||||
{prim::kPrimAsinGrad->name(), &EltWiseGradCPUKernel<T>::AsinGrad},
|
||||
{prim::kPrimACosGrad->name(), &EltWiseGradCPUKernel<T>::ACosGrad},
|
||||
{prim::kPrimAtanGrad->name(), &EltWiseGradCPUKernel<T>::AtanGrad},
|
||||
{prim::kPrimAsinhGrad->name(), &EltWiseGradCPUKernel<T>::AsinhGrad},
|
||||
{prim::kPrimAcoshGrad->name(), &EltWiseGradCPUKernel<T>::AcoshGrad}};
|
||||
if (elt_map.find(kernel_name_) == elt_map.end()) {
|
||||
MS_LOG(EXCEPTION) << "EltWiseGradCPUKernel does not support " << kernel_name_;
|
||||
}
|
||||
compute_func_ = elt_map.at(kernel_name_);
|
||||
} else {
|
||||
static const std::map<std::string,
|
||||
std::function<void(EltWiseGradCPUKernel *, const T *, const T *, T *, size_t, size_t)>>
|
||||
elt_map{{prim::kPrimReluGrad->name(), &EltWiseGradCPUKernel<T>::ReluGrad},
|
||||
|
@ -246,6 +253,24 @@ bool EltWiseGradCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inpu
|
|||
{prim::kPrimAsinhGrad->name(), &EltWiseGradCPUKernel<T>::AsinhGrad},
|
||||
{prim::kPrimAcoshGrad->name(), &EltWiseGradCPUKernel<T>::AcoshGrad},
|
||||
{prim::kPrimSoftplusGrad->name(), &EltWiseGradCPUKernel<T>::SoftplusGrad}};
|
||||
if (elt_map.find(kernel_name_) == elt_map.end()) {
|
||||
MS_LOG(EXCEPTION) << "EltWiseGradCPUKernel does not support " << kernel_name_;
|
||||
}
|
||||
compute_func_ = elt_map.at(kernel_name_);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void EltWiseGradCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
kernel_name_ = AnfAlgo::GetCNodeName(kernel_node);
|
||||
InitComputeFunc();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool EltWiseGradCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> &,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (inputs.size() < kInputMinNum || outputs.size() != kOutputNum) {
|
||||
MS_LOG(ERROR) << kernel_name_ << " requires at least 2 inputs and 1 output, but got " << inputs.size()
|
||||
<< " inputs and " << outputs.size() << " output.";
|
||||
|
@ -260,7 +285,7 @@ bool EltWiseGradCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inpu
|
|||
auto output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
ParallelLaunchAutoSearch(
|
||||
std::bind(elt_map.at(kernel_name_), this, input0, input1, output, std::placeholders::_1, std::placeholders::_2),
|
||||
std::bind(compute_func_, this, input0, input1, output, std::placeholders::_1, std::placeholders::_2),
|
||||
outputs[0]->size / sizeof(T), this, ¶llel_search_info_);
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -38,6 +38,7 @@ class EltWiseGradCPUKernel : public CPUKernel {
|
|||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
void InitComputeFunc();
|
||||
void ReluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) const;
|
||||
void ReLU6Grad(const T *input1, const T *input2, T *out, size_t start, size_t end) const;
|
||||
void AbsGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) const;
|
||||
|
@ -52,7 +53,8 @@ class EltWiseGradCPUKernel : public CPUKernel {
|
|||
void AcoshGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) const;
|
||||
void SoftplusGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) const;
|
||||
|
||||
std::string kernel_name_ = "";
|
||||
using TypeComputeFunc = std::function<void(EltWiseGradCPUKernel *, const T *, const T *, T *, size_t, size_t)>;
|
||||
TypeComputeFunc compute_func_{nullptr};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
|
@ -75,6 +77,10 @@ MS_REG_CPU_KERNEL_T(
|
|||
SqrtGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseGradCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
SqrtGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
EltWiseGradCPUKernel, double);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
TanhGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
|
|
|
@ -45,6 +45,8 @@ MS_REG_CPU_KERNEL(Reshape, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutput
|
|||
MS_REG_CPU_KERNEL(Reshape, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool), ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Reshape, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Reshape, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Reshape, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Reshape, KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
|
||||
|
@ -71,6 +73,8 @@ MS_REG_CPU_KERNEL(Flatten, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutput
|
|||
MS_REG_CPU_KERNEL(Flatten, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool), ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Flatten, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Flatten, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Flatten, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Flatten, KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
|
||||
|
@ -92,6 +96,8 @@ MS_REG_CPU_KERNEL(FlattenGrad, KernelAttr().AddInputAttr(kNumberTypeBool).AddOut
|
|||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(FlattenGrad, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(FlattenGrad, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(FlattenGrad, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(FlattenGrad, KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
|
||||
|
@ -113,6 +119,8 @@ MS_REG_CPU_KERNEL(ExpandDims, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutp
|
|||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(ExpandDims, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(ExpandDims, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(ExpandDims, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(ExpandDims, KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
|
||||
|
@ -132,6 +140,8 @@ MS_REG_CPU_KERNEL(Squeeze, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutput
|
|||
MS_REG_CPU_KERNEL(Squeeze, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool), ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Squeeze, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Squeeze, KernelAttr().AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Squeeze, KernelAttr().AddInputAttr(kNumberTypeUInt8).AddOutputAttr(kNumberTypeUInt8),
|
||||
ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Squeeze, KernelAttr().AddInputAttr(kNumberTypeUInt16).AddOutputAttr(kNumberTypeUInt16),
|
||||
|
|
|
@ -72,6 +72,7 @@ MS_REG_CPU_KERNEL(TensorScatterUpdate,
|
|||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
ScatterNdUpdateCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(ScatterNdUpdate,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
|
@ -79,6 +80,30 @@ MS_REG_CPU_KERNEL(ScatterNdUpdate,
|
|||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
ScatterNdUpdateCPUKernel)
|
||||
|
||||
MS_REG_CPU_KERNEL(TensorScatterUpdate,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
ScatterNdUpdateCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(ScatterNdUpdate,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
ScatterNdUpdateCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(TensorScatterUpdate,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
ScatterNdUpdateCPUKernel);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -46,6 +46,14 @@ MS_REG_CPU_KERNEL_T(Select,
|
|||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
SelectCPUKernel, float);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(Select,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
SelectCPUKernel, double);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(Select,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
|
|
|
@ -39,7 +39,7 @@ abstract::ShapePtr FloorInferShape(const PrimitivePtr &prim, const std::vector<A
|
|||
}
|
||||
|
||||
TypePtr FloorInferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
const std::set<TypePtr> valid_types = {kFloat16, kFloat32};
|
||||
const std::set<TypePtr> valid_types = {kFloat16, kFloat32, kFloat64};
|
||||
auto x_type = input_args[0]->BuildType();
|
||||
(void)CheckAndConvertUtils::CheckTensorTypeValid("x", x_type, valid_types, prim->name());
|
||||
return x_type;
|
||||
|
|
|
@ -2973,7 +2973,7 @@ class Rint(PrimitiveWithInfer):
|
|||
Tensor, has the same shape and type as `input_x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If dtype of `input_x` is neither float16 nor float32.
|
||||
TypeError: If dtype of `input_x` is not in [float16, float32, float64].
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
@ -3001,7 +3001,7 @@ class Rint(PrimitiveWithInfer):
|
|||
return x_shape
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
validator.check_tensor_dtype_valid('x', x_dtype, [mstype.float16, mstype.float32], self.name)
|
||||
validator.check_tensor_dtype_valid('x', x_dtype, [mstype.float16, mstype.float32, mstype.float64], self.name)
|
||||
return x_dtype
|
||||
|
||||
|
||||
|
|
|
@ -1845,7 +1845,7 @@ class SquaredDifference(_MathBinaryOp):
|
|||
"""
|
||||
|
||||
def infer_dtype(self, x_dtype, y_dtype):
|
||||
valid_type = [mstype.float16, mstype.float32, mstype.int32]
|
||||
valid_type = [mstype.float16, mstype.float32, mstype.float64, mstype.int32]
|
||||
return _MathBinaryOp.do_infer_dtype(x_dtype, y_dtype, valid_type, self.name)
|
||||
|
||||
|
||||
|
@ -2974,7 +2974,7 @@ class Floor(Primitive):
|
|||
Tensor, has the same shape as `x`.
|
||||
|
||||
Raises:
|
||||
TypeError: If dtype of `x` is not float16 or float32.
|
||||
TypeError: If dtype of `x` is not in [float16, float32, float64].
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
|
|
@ -36,8 +36,14 @@ class NetACos(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_acos():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
|
||||
def test_acos(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for ACos
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1], dtype=dtype)
|
||||
input_x = Tensor(np_array)
|
||||
net = NetACos()
|
||||
output = net(input_x)
|
||||
|
|
|
@ -36,8 +36,14 @@ class NetAcosh(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_acosh():
|
||||
np_array = np.array([1, 2, 3, 4, 5]).astype('float32')
|
||||
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
|
||||
def test_acosh(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for Acosh
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
np_array = np.array([1, 2, 3, 4, 5], dtype=dtype)
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAcosh()
|
||||
output = net(input_x)
|
||||
|
|
|
@ -80,6 +80,14 @@ def test_sub():
|
|||
expect_output = x - y
|
||||
assert np.all(output.asnumpy() == expect_output)
|
||||
|
||||
# float64
|
||||
x = np.random.rand(2, 3, 4, 4).astype(np.float64)
|
||||
y = np.random.rand(4, 1).astype(np.float64)
|
||||
net = SubNet()
|
||||
output = net(Tensor(x), Tensor(y, mindspore.float64))
|
||||
expect_output = x - y
|
||||
assert np.all(output.asnumpy() == expect_output)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
|
@ -102,6 +110,8 @@ def test_div():
|
|||
y6_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
||||
x7_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
|
||||
y7_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
|
||||
x8_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float64) * prop
|
||||
y8_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float64) * prop
|
||||
|
||||
x0 = Tensor(x0_np)
|
||||
y0 = Tensor(y0_np)
|
||||
|
@ -119,6 +129,8 @@ def test_div():
|
|||
y6 = Tensor(y6_np)
|
||||
x7 = Tensor(x7_np)
|
||||
y7 = Tensor(y7_np)
|
||||
x8 = Tensor(x8_np)
|
||||
y8 = Tensor(y8_np)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
div = DivNet()
|
||||
|
@ -173,6 +185,13 @@ def test_div():
|
|||
assert np.all(output7.asnumpy() == expect7)
|
||||
assert output7.shape == expect7.shape
|
||||
|
||||
output8 = div(x8, y8)
|
||||
expect8 = np.divide(x8_np, y8_np)
|
||||
diff8 = output8.asnumpy() - expect8
|
||||
error8 = np.ones(shape=expect8.shape) * 1.0e-7
|
||||
assert np.all(diff8 < error8)
|
||||
assert output8.shape == expect8.shape
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
|
@ -189,6 +208,8 @@ def test_floor_div():
|
|||
y3_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float32) * prop
|
||||
x4_np = np.random.randint(1, 100, (2, 1, 1, 4)).astype(np.int64) * prop
|
||||
y4_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.int64) * prop
|
||||
x5_np = np.random.randint(1, 100, (2, 3, 4, 4)).astype(np.float64) * prop
|
||||
y5_np = np.random.randint(1, 100, (2, 1, 4, 4)).astype(np.float64) * prop
|
||||
|
||||
x0 = Tensor(x0_np)
|
||||
y0 = Tensor(y0_np)
|
||||
|
@ -200,6 +221,8 @@ def test_floor_div():
|
|||
y3 = Tensor(y3_np)
|
||||
x4 = Tensor(x4_np)
|
||||
y4 = Tensor(y4_np)
|
||||
x5 = Tensor(x5_np)
|
||||
y5 = Tensor(y5_np)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
floor_div = FloorDivNet()
|
||||
|
@ -238,6 +261,13 @@ def test_floor_div():
|
|||
assert np.all(diff4 < error4)
|
||||
assert output4.shape == expect4.shape
|
||||
|
||||
output5 = floor_div(x5, y5)
|
||||
expect5 = np.floor_divide(x5_np, y5_np)
|
||||
diff5 = output5.asnumpy() - expect5
|
||||
error5 = np.ones(shape=expect5.shape) * 1.0e-7
|
||||
assert np.all(diff5 < error5)
|
||||
assert output5.shape == expect5.shape
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
|
|
|
@ -144,6 +144,13 @@ def test_floor():
|
|||
print(output.asnumpy())
|
||||
assert np.all(output.asnumpy() == expect_output)
|
||||
|
||||
x = np.random.randn(4, 3).astype(np.float64)
|
||||
x = x * 100
|
||||
output = net(Tensor(x))
|
||||
expect_output = np.floor(x)
|
||||
print(output.asnumpy())
|
||||
assert np.all(output.asnumpy() == expect_output)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
|
@ -161,6 +168,11 @@ def test_rint():
|
|||
expect_output = np.rint(x).astype(np.float32)
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect_output)
|
||||
|
||||
x = np.random.randn(3, 4, 5, 6).astype(np.float64) * prop
|
||||
output = net(Tensor(x))
|
||||
expect_output = np.rint(x).astype(np.float64)
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect_output)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
|
@ -178,6 +190,11 @@ def test_round():
|
|||
expect_output = np.round(x).astype(np.float32)
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect_output)
|
||||
|
||||
x = np.array([0.9920, -0.4077, 0.9734, -1.0362, 1.5, -2.5, 4.5]).astype(np.float64)
|
||||
output = net(Tensor(x))
|
||||
expect_output = np.round(x).astype(np.float64)
|
||||
np.testing.assert_almost_equal(output.asnumpy(), expect_output)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
|
@ -199,6 +216,13 @@ def test_reciprocal():
|
|||
error = np.ones(shape=expect_output.shape) * 1.0e-5
|
||||
assert np.all(np.abs(diff) < error)
|
||||
|
||||
x = np.random.randn(3, 4, 5, 6).astype(np.float64) * prop
|
||||
output = net(Tensor(x))
|
||||
expect_output = (1. / x).astype(np.float64)
|
||||
diff = output.asnumpy() - expect_output
|
||||
error = np.ones(shape=expect_output.shape) * 1.0e-7
|
||||
assert np.all(np.abs(diff) < error)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
|
|
|
@ -36,8 +36,14 @@ class NetAsin(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_asin():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
|
||||
def test_asin(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for ASin
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1], dtype=dtype)
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAsin()
|
||||
output = net(input_x)
|
||||
|
|
|
@ -36,8 +36,14 @@ class NetAsinh(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_asinh():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
|
||||
def test_asinh(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for Asinh
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1], dtype=dtype)
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAsinh()
|
||||
output = net(input_x)
|
||||
|
|
|
@ -36,7 +36,13 @@ class AssignAdd(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_assign_add():
|
||||
@pytest.mark.parametrize('dtype', [np.int32, np.int64, np.float32, np.float64])
|
||||
def test_assign_add(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for AssignAdd
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
expect1 = np.array([[[[0, 2, 4.],
|
||||
[6, 8, 10.],
|
||||
[12, 14, 16.]],
|
||||
|
@ -56,8 +62,8 @@ def test_assign_add():
|
|||
[63, 66, 69],
|
||||
[72, 75, 78]]]])
|
||||
|
||||
x2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
|
||||
y2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(np.float32))
|
||||
x2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(dtype))
|
||||
y2 = Tensor(np.arange(1 * 3 * 3 * 3).reshape(1, 3, 3, 3).astype(dtype))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
add = AssignAdd(x2)
|
||||
|
|
|
@ -44,3 +44,11 @@ def test_atan2():
|
|||
print(output)
|
||||
expect = np.arctan2(np_array, np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
||||
np_array = np.array([1, 2, 3, 4, 5], dtype=np.float64)
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAtan2()
|
||||
output = net(input_x, input_x)
|
||||
print(output)
|
||||
expect = np.arctan2(np_array, np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
|
|
@ -36,8 +36,14 @@ class NetAtan(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_atan():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
|
||||
def test_atan(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for Atan
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1], dtype=dtype)
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAtan()
|
||||
output = net(input_x)
|
||||
|
|
|
@ -36,8 +36,14 @@ class NetAtanh(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_atanh():
|
||||
np_array = np.array([-0.5, 0, 0.5]).astype('float32')
|
||||
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
|
||||
def test_atanh(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for Atanh
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
np_array = np.array([-0.5, 0, 0.5], dtype)
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAtanh()
|
||||
output = net(input_x)
|
||||
|
|
|
@ -44,3 +44,11 @@ def test_cos():
|
|||
print(output)
|
||||
expect = np.cos(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float64')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetCos()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.cos(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
|
|
@ -64,6 +64,26 @@ def test_float32():
|
|||
assert outputs.shape == (3,)
|
||||
assert np.allclose(outputs.asnumpy(), [True, True, True])
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_float64():
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for GreaterEqual of float64
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
op = P.GreaterEqual()
|
||||
op_wrapper = OpNetWrapper(op)
|
||||
|
||||
input_x = Tensor(np.array([1, 2, -1]).astype(np.float64))
|
||||
input_y = Tensor(np.array([-3, 2, -1]).astype(np.float64))
|
||||
outputs = op_wrapper(input_x, input_y)
|
||||
|
||||
print(outputs)
|
||||
assert outputs.shape == (3,)
|
||||
assert np.allclose(outputs.asnumpy(), [True, True, True])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_int32()
|
||||
|
|
|
@ -65,6 +65,26 @@ def test_float32():
|
|||
assert np.allclose(outputs.asnumpy(), [True, False, False])
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_float64():
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for Greater
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
op = P.Greater()
|
||||
op_wrapper = OpNetWrapper(op)
|
||||
|
||||
input_x = Tensor(np.array([1, 2, -1]).astype(np.float64))
|
||||
input_y = Tensor(np.array([-3, 2, -1]).astype(np.float64))
|
||||
outputs = op_wrapper(input_x, input_y)
|
||||
|
||||
print(outputs)
|
||||
assert outputs.shape == (3,)
|
||||
assert np.allclose(outputs.asnumpy(), [True, False, False])
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_int32()
|
||||
test_float32()
|
||||
|
|
|
@ -177,12 +177,16 @@ def test_net_int64():
|
|||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_net_float64():
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for LessEqual of float64
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float64)
|
||||
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float64)
|
||||
x1 = Tensor(x1_np)
|
||||
y1 = Tensor(y1_np)
|
||||
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
net = Net()
|
||||
out = net(x1, y1).asnumpy()
|
||||
|
|
|
@ -32,17 +32,23 @@ class Net(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_net():
|
||||
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32)
|
||||
x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float32)
|
||||
y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
x3_np = np.random.randint(1, 5, 1).astype(np.float32)
|
||||
y3_np = np.random.randint(1, 5, 1).astype(np.float32)
|
||||
x4_np = np.array(768).astype(np.float32)
|
||||
y4_np = np.array(3072.5).astype(np.float32)
|
||||
@pytest.mark.parametrize('dtype', [np.int32, np.int64, np.float32, np.float64])
|
||||
def test_net(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for Less
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(dtype)
|
||||
y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(dtype)
|
||||
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(dtype)
|
||||
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(dtype)
|
||||
x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(dtype)
|
||||
y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(dtype)
|
||||
x3_np = np.random.randint(1, 5, 1).astype(dtype)
|
||||
y3_np = np.random.randint(1, 5, 1).astype(dtype)
|
||||
x4_np = np.array(768).astype(dtype)
|
||||
y4_np = np.array(3072.5).astype(dtype)
|
||||
|
||||
x0 = Tensor(x0_np)
|
||||
y0 = Tensor(y0_np)
|
||||
|
|
|
@ -34,9 +34,15 @@ class NetOnesLike(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_OnesLike():
|
||||
x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
x1_np = np.random.uniform(-2, 2, 1).astype(np.float32)
|
||||
@pytest.mark.parametrize('dtype', [np.int32, np.float32, np.float64])
|
||||
def test_OnesLike(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for OnesLike
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(dtype)
|
||||
x1_np = np.random.uniform(-2, 2, 1).astype(dtype)
|
||||
|
||||
x0 = Tensor(x0_np)
|
||||
x1 = Tensor(x1_np)
|
||||
|
|
|
@ -35,15 +35,28 @@ class Net(nn.Cell):
|
|||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_net():
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for Pow
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
y1_np = np.array(3).astype(np.float32)
|
||||
x2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float64)
|
||||
y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float64)
|
||||
x3_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float64)
|
||||
y3_np = np.array(3).astype(np.float64)
|
||||
|
||||
x0 = Tensor(x0_np)
|
||||
y0 = Tensor(y0_np)
|
||||
x1 = Tensor(x1_np)
|
||||
y1 = Tensor(y1_np)
|
||||
x2 = Tensor(x2_np)
|
||||
y2 = Tensor(y2_np)
|
||||
x3 = Tensor(x3_np)
|
||||
y3 = Tensor(y3_np)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
net = Net()
|
||||
|
@ -56,3 +69,13 @@ def test_net():
|
|||
expect = np.power(x1_np, y1_np)
|
||||
assert np.all(out == expect)
|
||||
assert out.shape == expect.shape
|
||||
|
||||
out = net(x2, y2).asnumpy()
|
||||
expect = np.power(x2_np, y2_np)
|
||||
assert np.all(out == expect)
|
||||
assert out.shape == expect.shape
|
||||
|
||||
out = net(x3, y3).asnumpy()
|
||||
expect = np.power(x3_np, y3_np)
|
||||
assert np.all(out == expect)
|
||||
assert out.shape == expect.shape
|
||||
|
|
|
@ -34,17 +34,23 @@ class NetRealDiv(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_real_div():
|
||||
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32)
|
||||
x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(np.float32)
|
||||
y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
|
||||
x3_np = np.random.randint(1, 5, 1).astype(np.float32)
|
||||
y3_np = np.random.randint(1, 5, 1).astype(np.float32)
|
||||
x4_np = np.array(768).astype(np.float32)
|
||||
y4_np = np.array(3072.5).astype(np.float32)
|
||||
@pytest.mark.parametrize('dtype', [np.float32, np.float64])
|
||||
def test_real_div(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for RealDiv
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(dtype)
|
||||
y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(dtype)
|
||||
x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(dtype)
|
||||
y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(dtype)
|
||||
x2_np = np.random.randint(1, 5, (2, 1, 1, 4)).astype(dtype)
|
||||
y2_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(dtype)
|
||||
x3_np = np.random.randint(1, 5, 1).astype(dtype)
|
||||
y3_np = np.random.randint(1, 5, 1).astype(dtype)
|
||||
x4_np = np.array(768).astype(dtype)
|
||||
y4_np = np.array(3072.5).astype(dtype)
|
||||
|
||||
x0 = Tensor(x0_np)
|
||||
y0 = Tensor(y0_np)
|
||||
|
|
|
@ -61,6 +61,25 @@ def test_sign_int32():
|
|||
assert np.allclose(outputs.asnumpy(), [[1, 0, -1]])
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_sign_float64():
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for Sign of float64
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
op = P.Sign()
|
||||
op_wrapper = OpNetWrapper(op)
|
||||
|
||||
input_x = Tensor(np.array([[2.0, 0.0, -1.0]]).astype(np.float64))
|
||||
outputs = op_wrapper(input_x)
|
||||
|
||||
print(outputs)
|
||||
assert np.allclose(outputs.asnumpy(), [[1., 0., -1.]])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_sign_float32()
|
||||
test_sign_int32()
|
||||
|
|
|
@ -44,3 +44,11 @@ def test_sin():
|
|||
print(output)
|
||||
expect = np.sin(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float64')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetSin()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.sin(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
||||
|
|
|
@ -47,8 +47,14 @@ class Net(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_net():
|
||||
x = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
||||
@pytest.mark.parametrize('dtype', [np.int32, np.int64, np.float32, np.float64])
|
||||
def test_net(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for Square
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
x = np.random.randn(2, 3, 3, 4).astype(dtype)
|
||||
y_expect = x * x
|
||||
net = Net()
|
||||
out = net(Tensor(x))
|
||||
|
@ -56,7 +62,7 @@ def test_net():
|
|||
err = np.ones(shape=y_expect.shape) * 1.0e-5
|
||||
assert np.all(diff < err)
|
||||
assert out.shape == y_expect.shape
|
||||
sens = np.random.randn(2, 3, 3, 4).astype(np.float32)
|
||||
sens = np.random.randn(2, 3, 3, 4).astype(dtype)
|
||||
backword_net = Grad(Net())
|
||||
output = backword_net(Tensor(x), Tensor(sens))
|
||||
print(len(output))
|
||||
|
|
|
@ -56,6 +56,14 @@ def test_net01():
|
|||
assert np.all(expect2 == output2)
|
||||
assert output2.shape == expect2.shape
|
||||
|
||||
x2 = np.random.randn(2, 3).astype(np.float64)
|
||||
y2 = np.random.randn(2, 3).astype(np.float64)
|
||||
output2 = net(Tensor(x2), Tensor(y2)).asnumpy()
|
||||
diff = x2 - y2
|
||||
expect2 = diff * diff
|
||||
assert np.all(expect2 == output2)
|
||||
assert output2.shape == expect2.shape
|
||||
|
||||
x3 = np.random.randn(2, 3).astype(np.bool)
|
||||
y3 = np.random.randn(2, 3).astype(np.bool)
|
||||
try:
|
||||
|
|
|
@ -34,9 +34,15 @@ class NetZerosLike(nn.Cell):
|
|||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_ZerosLike():
|
||||
x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)
|
||||
x1_np = np.random.uniform(-2, 2, 1).astype(np.float32)
|
||||
@pytest.mark.parametrize('dtype', [np.int32, np.float32, np.float64])
|
||||
def test_ZerosLike(dtype):
|
||||
"""
|
||||
Feature: ALL To ALL
|
||||
Description: test cases for ZerosLike
|
||||
Expectation: the result match to numpy
|
||||
"""
|
||||
x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(dtype)
|
||||
x1_np = np.random.uniform(-2, 2, 1).astype(dtype)
|
||||
|
||||
x0 = Tensor(x0_np)
|
||||
x1 = Tensor(x1_np)
|
||||
|
|
Loading…
Reference in New Issue