forked from mindspore-Ecosystem/mindspore
!2299 delete seed interface of Initializer
Merge pull request !2299 from yihuaijie/slice
This commit is contained in:
commit
8eceb8974d
|
@ -41,7 +41,6 @@ class Initializer:
|
|||
self._kwargs = kwargs
|
||||
self.shape = None
|
||||
self.dtype = None
|
||||
self._seed = None
|
||||
|
||||
def _initialize(self, *kwargs):
|
||||
raise NotImplementedError('Must be overridden!')
|
||||
|
@ -49,15 +48,6 @@ class Initializer:
|
|||
def __call__(self, arr):
|
||||
return self._initialize(arr)
|
||||
|
||||
@property
|
||||
def seed(self):
|
||||
return self._seed
|
||||
|
||||
@seed.setter
|
||||
def seed(self, seed_):
|
||||
"""set the random seed."""
|
||||
self._seed = seed_
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
return self._shape
|
||||
|
@ -74,8 +64,15 @@ class Initializer:
|
|||
def dtype(self, dtype):
|
||||
self._dtype = dtype
|
||||
|
||||
def to_tensor(self):
|
||||
"""Get the tensor format data of this Initializer."""
|
||||
def to_tensor(self, slice_index=None):
|
||||
"""
|
||||
Get the tensor format data of this Initializer.
|
||||
|
||||
Args:
|
||||
slice_index (int): Slice index of a parameter's slices.
|
||||
Used when initialize a slice of a parameter, it guarantee that
|
||||
devices use the same slice can generate the same tensor.
|
||||
"""
|
||||
arr = None
|
||||
try:
|
||||
arr = np.ndarray(self.shape)
|
||||
|
@ -83,10 +80,10 @@ class Initializer:
|
|||
msg = "Error shape={}".format(self.shape)
|
||||
logger.error(msg)
|
||||
raise ValueError(msg)
|
||||
if self._seed is not None:
|
||||
np.random.seed(self.seed)
|
||||
|
||||
if slice_index is not None:
|
||||
np.random.seed(slice_index)
|
||||
self.__call__(arr)
|
||||
self._seed = None
|
||||
return Tensor(arr, dtype=self.dtype)
|
||||
|
||||
def _register(*aliases):
|
||||
|
|
|
@ -22,7 +22,7 @@ from .initializer import initializer, Initializer
|
|||
from .tensor import Tensor, MetaTensor
|
||||
from .._checkparam import _check_str_by_regular
|
||||
from ..parallel._utils import _set_clone_info, _CloneInfo
|
||||
from ..parallel._tensor import _get_seed
|
||||
from ..parallel._tensor import _get_slice_index
|
||||
|
||||
__all__ = ['Parameter', 'ParameterTuple']
|
||||
|
||||
|
@ -250,9 +250,11 @@ class Parameter:
|
|||
raise ValueError("The length of layout must be 3! layout is {}."
|
||||
.format(layout))
|
||||
self.init_mode.shape = layout[2]
|
||||
self.init_mode.seed = int(_get_seed(layout[0], layout[1]))
|
||||
slice_index = int(_get_slice_index(layout[0], layout[1]))
|
||||
self.default_input = self.init_mode.to_tensor(slice_index)
|
||||
else:
|
||||
self.default_input = self.init_mode.to_tensor()
|
||||
|
||||
self.default_input = self.init_mode.to_tensor()
|
||||
self.init_mode = None
|
||||
if set_sliced:
|
||||
self.sliced = True
|
||||
|
|
|
@ -168,21 +168,21 @@ def _chunk_tensor_by_strategy(np_tensor, strategy):
|
|||
raise ValueError("The length of np_tensor does not match the length of strategy!")
|
||||
return _chunk_tensor(np_tensor, strategy, len(strategy))
|
||||
|
||||
def _get_seed(dev_mat, tensor_map):
|
||||
def _get_slice_index(dev_mat, tensor_map):
|
||||
"""
|
||||
Get the random seed for current slice.
|
||||
Get the slice index for current slice.
|
||||
|
||||
Args:
|
||||
dev_mat (list): The device matrix of devices.
|
||||
tensor_map (list): The split strategy of tensor.
|
||||
|
||||
Returns:
|
||||
Integer, the local random seed for this device.
|
||||
Integer, the slice index for slice on this device.
|
||||
"""
|
||||
rank = get_rank()
|
||||
tensor_strategy = _get_tensor_strategy(dev_mat, tensor_map)
|
||||
tensor_slice_seed = _get_tensor_slice_index(dev_mat, tensor_strategy, tensor_map, rank)
|
||||
return tensor_slice_seed
|
||||
tensor_slice_index = _get_tensor_slice_index(dev_mat, tensor_strategy, tensor_map, rank)
|
||||
return tensor_slice_index
|
||||
|
||||
def _load_tensor(tensor, dev_mat, tensor_map):
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue