forked from mindspore-Ecosystem/mindspore
Add Laplace random operator.
This commit is contained in:
parent
99d4289251
commit
8dff818a18
|
@ -38,3 +38,4 @@ from .gamma import _gamma_aicpu
|
|||
from .poisson import _poisson_aicpu
|
||||
from .uniform_int import _uniform_int_aicpu
|
||||
from .uniform_real import _uniform_real_aicpu
|
||||
from .laplace import _laplace_aicpu
|
||||
|
|
|
@ -0,0 +1,33 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""RandomLaplace op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
|
||||
laplace_op_info = AiCPURegOp("Laplace") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "shape", "required") \
|
||||
.input(1, "mean", "required") \
|
||||
.input(2, "lambda_param", "required") \
|
||||
.output(0, "output", "required") \
|
||||
.attr("seed", "int") \
|
||||
.dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \
|
||||
.get_op_info()
|
||||
|
||||
@op_info_register(laplace_op_info)
|
||||
def _laplace_aicpu():
|
||||
"""RandomLaplace AiCPU register"""
|
||||
return
|
|
@ -55,7 +55,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
|
|||
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps)
|
||||
|
||||
from .random_ops import (RandomChoiceWithMask, Normal, Gamma, Poisson, UniformInt, UniformReal,
|
||||
RandomCategorical)
|
||||
RandomCategorical, Laplace)
|
||||
from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm,
|
||||
BiasAdd, Conv2D,
|
||||
DepthwiseConv2dNative,
|
||||
|
@ -177,6 +177,7 @@ __all__ = [
|
|||
'Poisson',
|
||||
'UniformInt',
|
||||
'UniformReal',
|
||||
'Laplace',
|
||||
'RandomCategorical',
|
||||
'ResizeBilinear',
|
||||
'ScalarSummary',
|
||||
|
|
|
@ -36,9 +36,9 @@ class Normal(PrimitiveWithInfer):
|
|||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
- **mean** (Tensor) - The mean μ distribution parameter, The mean specifies the location of the peak.
|
||||
With float32 data type.
|
||||
- **stddev** (Tensor) - the deviation σ distribution parameter. With float32 data type.
|
||||
- **mean** (Tensor) - The mean μ distribution parameter, which specifies the location of the peak.
|
||||
With float32 data type.
|
||||
- **stddev** (Tensor) - The deviation σ distribution parameter. With float32 data type.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the shape 'shape' input and dtype as float32.
|
||||
|
@ -75,6 +75,60 @@ class Normal(PrimitiveWithInfer):
|
|||
return out
|
||||
|
||||
|
||||
class Laplace(PrimitiveWithInfer):
|
||||
r"""
|
||||
Generates random numbers according to the Laplace random number distribution.
|
||||
It is defined as:
|
||||
|
||||
.. math::
|
||||
\text{f}(x;μ,λ) = \frac{1}{2λ}\exp(-\frac{|x-μ|}{λ}),
|
||||
|
||||
Args:
|
||||
seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
- **mean** (Tensor) - The mean μ distribution parameter, which specifies the location of the peak.
|
||||
With float32 data type.
|
||||
- **lambda_param** (Tensor) - The parameter used for controling the variance of this random distribution. The
|
||||
variance of Laplace distribution is equal to twice the square of lambda_param. With float32 data type.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the shape 'shape' input and dtype as float32.
|
||||
|
||||
Examples:
|
||||
>>> shape = (4, 16)
|
||||
>>> mean = Tensor(1.0, mstype.float32)
|
||||
>>> lambda_param = Tensor(1.0, mstype.float32)
|
||||
>>> laplace = P.Laplace(seed=2)
|
||||
>>> output = laplace(shape, mean, lambda_param)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, seed=0):
|
||||
"""Init Laplace"""
|
||||
self.init_prim_io_names(inputs=['shape', 'mean', 'lambda_param'], outputs=['output'])
|
||||
validator.check_value_type('seed', seed, [int], self.name)
|
||||
|
||||
def __infer__(self, shape, mean, lambda_param):
|
||||
shape_v = shape["value"]
|
||||
if shape_v is None:
|
||||
raise ValueError(f"For {self.name}, shape must be const.")
|
||||
validator.check_value_type("shape", shape_v, [tuple], self.name)
|
||||
for i, shape_i in enumerate(shape_v):
|
||||
validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name)
|
||||
validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name)
|
||||
validator.check_tensor_type_same({"lambda_param": lambda_param["dtype"]}, [mstype.float32], self.name)
|
||||
broadcast_shape = get_broadcast_shape(mean['shape'], lambda_param['shape'], self.name)
|
||||
broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name)
|
||||
out = {
|
||||
'shape': broadcast_shape,
|
||||
'dtype': mstype.float32,
|
||||
'value': None}
|
||||
return out
|
||||
|
||||
|
||||
class Gamma(PrimitiveWithInfer):
|
||||
r"""
|
||||
Produces random positive floating-point values x, distributed according to probability density function:
|
||||
|
@ -101,7 +155,7 @@ class Gamma(PrimitiveWithInfer):
|
|||
>>> alpha = Tensor(1.0, mstype.float32)
|
||||
>>> beta = Tensor(1.0, mstype.float32)
|
||||
>>> gamma = P.Gamma(seed=3)
|
||||
>>> output = normal(shape, alpha, beta)
|
||||
>>> output = Gamma(shape, alpha, beta)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Net, self).__init__()
|
||||
self.laplace = P.Laplace(seed=seed)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self, mean, lambda_param):
|
||||
return self.laplace(self.shape, mean, lambda_param)
|
||||
|
||||
|
||||
def test_net_1D():
|
||||
seed = 10
|
||||
shape = (3, 2, 4)
|
||||
mean = 1.0
|
||||
lambda_param = 1.0
|
||||
net = Net(shape, seed)
|
||||
tmean, tlambda_param = Tensor(mean, mstype.float32), Tensor(lambda_param, mstype.float32)
|
||||
output = net(tmean, tlambda_param)
|
||||
print(output.asnumpy())
|
||||
assert output.shape == (3, 2, 4)
|
||||
|
||||
|
||||
def test_net_ND():
|
||||
seed = 10
|
||||
shape = (3, 1, 2)
|
||||
mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
|
||||
lambda_param = np.array([1.0]).astype(np.float32)
|
||||
net = Net(shape, seed)
|
||||
tmean, tlambda_param = Tensor(mean), Tensor(lambda_param)
|
||||
output = net(tmean, tlambda_param)
|
||||
print(output.asnumpy())
|
||||
assert output.shape == (3, 2, 2)
|
|
@ -410,6 +410,17 @@ class NormalNet(nn.Cell):
|
|||
return out
|
||||
|
||||
|
||||
class LaplaceNet(nn.Cell):
|
||||
def __init__(self, shape=None, seed=0):
|
||||
super(LaplaceNet, self).__init__()
|
||||
self.laplace = P.Laplace(seed=seed)
|
||||
self.shape = shape
|
||||
|
||||
def construct(self, mean, lambda_param):
|
||||
out = self.laplace(self.shape, mean, lambda_param)
|
||||
return out
|
||||
|
||||
|
||||
class GammaNet(nn.Cell):
|
||||
def __init__(self, shape=None, seed=0):
|
||||
super(GammaNet, self).__init__()
|
||||
|
@ -666,6 +677,10 @@ test_case_math_ops = [
|
|||
'block': NormalNet((3, 2, 4), 0),
|
||||
'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)],
|
||||
'skip': ['backward']}),
|
||||
('Laplace', {
|
||||
'block': LaplaceNet((3, 2, 4), 0),
|
||||
'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)],
|
||||
'skip': ['backward']}),
|
||||
('Gamma', {
|
||||
'block': GammaNet((3, 2, 4), 0),
|
||||
'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)],
|
||||
|
|
Loading…
Reference in New Issue