Add Laplace random operator.

This commit is contained in:
jin-xiulang 2020-06-29 15:10:29 +08:00
parent 99d4289251
commit 8dff818a18
6 changed files with 166 additions and 5 deletions

View File

@ -38,3 +38,4 @@ from .gamma import _gamma_aicpu
from .poisson import _poisson_aicpu
from .uniform_int import _uniform_int_aicpu
from .uniform_real import _uniform_real_aicpu
from .laplace import _laplace_aicpu

View File

@ -0,0 +1,33 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""RandomLaplace op"""
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
laplace_op_info = AiCPURegOp("Laplace") \
.fusion_type("OPAQUE") \
.input(0, "shape", "required") \
.input(1, "mean", "required") \
.input(2, "lambda_param", "required") \
.output(0, "output", "required") \
.attr("seed", "int") \
.dtype_format(DataType.I32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.I32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW, DataType.F32_NCHW) \
.get_op_info()
@op_info_register(laplace_op_info)
def _laplace_aicpu():
"""RandomLaplace AiCPU register"""
return

View File

@ -55,7 +55,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A
Square, Sub, TensorAdd, Sign, Round, SquareSumAll, Atan, Atanh, Cosh, Sinh, Eps)
from .random_ops import (RandomChoiceWithMask, Normal, Gamma, Poisson, UniformInt, UniformReal,
RandomCategorical)
RandomCategorical, Laplace)
from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm,
BiasAdd, Conv2D,
DepthwiseConv2dNative,
@ -177,6 +177,7 @@ __all__ = [
'Poisson',
'UniformInt',
'UniformReal',
'Laplace',
'RandomCategorical',
'ResizeBilinear',
'ScalarSummary',

View File

@ -36,9 +36,9 @@ class Normal(PrimitiveWithInfer):
Inputs:
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
- **mean** (Tensor) - The mean μ distribution parameter, The mean specifies the location of the peak.
With float32 data type.
- **stddev** (Tensor) - the deviation σ distribution parameter. With float32 data type.
- **mean** (Tensor) - The mean μ distribution parameter, which specifies the location of the peak.
With float32 data type.
- **stddev** (Tensor) - The deviation σ distribution parameter. With float32 data type.
Outputs:
Tensor, has the shape 'shape' input and dtype as float32.
@ -75,6 +75,60 @@ class Normal(PrimitiveWithInfer):
return out
class Laplace(PrimitiveWithInfer):
r"""
Generates random numbers according to the Laplace random number distribution.
It is defined as:
.. math::
\text{f}(x;μ,λ) = \frac{1}{2λ}\exp(-\frac{|x-μ|}{λ}),
Args:
seed (int): Seed data is used as entropy source for Random number engines generating pseudo-random numbers.
Default: 0.
Inputs:
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
- **mean** (Tensor) - The mean μ distribution parameter, which specifies the location of the peak.
With float32 data type.
- **lambda_param** (Tensor) - The parameter used for controling the variance of this random distribution. The
variance of Laplace distribution is equal to twice the square of lambda_param. With float32 data type.
Outputs:
Tensor, has the shape 'shape' input and dtype as float32.
Examples:
>>> shape = (4, 16)
>>> mean = Tensor(1.0, mstype.float32)
>>> lambda_param = Tensor(1.0, mstype.float32)
>>> laplace = P.Laplace(seed=2)
>>> output = laplace(shape, mean, lambda_param)
"""
@prim_attr_register
def __init__(self, seed=0):
"""Init Laplace"""
self.init_prim_io_names(inputs=['shape', 'mean', 'lambda_param'], outputs=['output'])
validator.check_value_type('seed', seed, [int], self.name)
def __infer__(self, shape, mean, lambda_param):
shape_v = shape["value"]
if shape_v is None:
raise ValueError(f"For {self.name}, shape must be const.")
validator.check_value_type("shape", shape_v, [tuple], self.name)
for i, shape_i in enumerate(shape_v):
validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name)
validator.check_tensor_type_same({"mean": mean["dtype"]}, [mstype.float32], self.name)
validator.check_tensor_type_same({"lambda_param": lambda_param["dtype"]}, [mstype.float32], self.name)
broadcast_shape = get_broadcast_shape(mean['shape'], lambda_param['shape'], self.name)
broadcast_shape = get_broadcast_shape(broadcast_shape, shape_v, self.name)
out = {
'shape': broadcast_shape,
'dtype': mstype.float32,
'value': None}
return out
class Gamma(PrimitiveWithInfer):
r"""
Produces random positive floating-point values x, distributed according to probability density function:
@ -101,7 +155,7 @@ class Gamma(PrimitiveWithInfer):
>>> alpha = Tensor(1.0, mstype.float32)
>>> beta = Tensor(1.0, mstype.float32)
>>> gamma = P.Gamma(seed=3)
>>> output = normal(shape, alpha, beta)
>>> output = Gamma(shape, alpha, beta)
"""
@prim_attr_register

View File

@ -0,0 +1,57 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
from mindspore.common import dtype as mstype
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
class Net(nn.Cell):
def __init__(self, shape, seed=0):
super(Net, self).__init__()
self.laplace = P.Laplace(seed=seed)
self.shape = shape
def construct(self, mean, lambda_param):
return self.laplace(self.shape, mean, lambda_param)
def test_net_1D():
seed = 10
shape = (3, 2, 4)
mean = 1.0
lambda_param = 1.0
net = Net(shape, seed)
tmean, tlambda_param = Tensor(mean, mstype.float32), Tensor(lambda_param, mstype.float32)
output = net(tmean, tlambda_param)
print(output.asnumpy())
assert output.shape == (3, 2, 4)
def test_net_ND():
seed = 10
shape = (3, 1, 2)
mean = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
lambda_param = np.array([1.0]).astype(np.float32)
net = Net(shape, seed)
tmean, tlambda_param = Tensor(mean), Tensor(lambda_param)
output = net(tmean, tlambda_param)
print(output.asnumpy())
assert output.shape == (3, 2, 2)

View File

@ -410,6 +410,17 @@ class NormalNet(nn.Cell):
return out
class LaplaceNet(nn.Cell):
def __init__(self, shape=None, seed=0):
super(LaplaceNet, self).__init__()
self.laplace = P.Laplace(seed=seed)
self.shape = shape
def construct(self, mean, lambda_param):
out = self.laplace(self.shape, mean, lambda_param)
return out
class GammaNet(nn.Cell):
def __init__(self, shape=None, seed=0):
super(GammaNet, self).__init__()
@ -666,6 +677,10 @@ test_case_math_ops = [
'block': NormalNet((3, 2, 4), 0),
'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)],
'skip': ['backward']}),
('Laplace', {
'block': LaplaceNet((3, 2, 4), 0),
'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)],
'skip': ['backward']}),
('Gamma', {
'block': GammaNet((3, 2, 4), 0),
'desc_inputs': [Tensor(1.0, mstype.float32), Tensor(1.0, mstype.float32)],