forked from mindspore-Ecosystem/mindspore
!7780 fix the bug introduced by ohter pr
Merge pull request !7780 from xutianchun/fix_cjh
This commit is contained in:
commit
8c79cf2c20
|
@ -565,7 +565,7 @@ PostTrainingQuantizer::PostTrainingQuantizer(FuncGraphPtr graph, string path, in
|
|||
}
|
||||
|
||||
STATUS PostTrainingQuantizer::DoQuantInput(double scale, int32_t zeropoint, struct MaxMin *max_min,
|
||||
std::shared_ptr<PrimitiveC> lite_primitive, const size_t &index) {
|
||||
std::shared_ptr<PrimitiveC> lite_primitive) {
|
||||
schema::QuantParamT quant_param;
|
||||
quant_param.scale = scale;
|
||||
quant_param.zeroPoint = zeropoint;
|
||||
|
@ -573,8 +573,9 @@ STATUS PostTrainingQuantizer::DoQuantInput(double scale, int32_t zeropoint, stru
|
|||
quant_param.min = max_min->min;
|
||||
quant_param.numBits = bit_num;
|
||||
quant_param.narrowRange = false;
|
||||
quant_param.inited = true;
|
||||
std::vector<schema::QuantParamT> quant_params = {quant_param};
|
||||
lite_primitive->SetInputQuantParam(index, quant_params);
|
||||
lite_primitive->AddInputQuantParam(quant_params);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
@ -589,7 +590,7 @@ STATUS PostTrainingQuantizer::DoQuantOutput(double scale, int zeropoint, struct
|
|||
quant_param.narrowRange = false;
|
||||
quant_param.inited = true;
|
||||
std::vector<schema::QuantParamT> quant_params = {quant_param};
|
||||
lite_primitive->SetOutputQuantParam(0, quant_params);
|
||||
lite_primitive->AddOutputQuantParam(quant_params);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
@ -642,7 +643,7 @@ STATUS PostTrainingQuantizer::DoBiasQuant(AnfNodePtr bias, std::shared_ptr<Primi
|
|||
auto bias_param = std::dynamic_pointer_cast<ParamValueLite>(bias_default_param);
|
||||
|
||||
auto active_weight_quant_params = primitive_c->GetInputQuantParams();
|
||||
if (active_weight_quant_params.size() != 3) {
|
||||
if (active_weight_quant_params.size() != 2) {
|
||||
MS_LOG(ERROR) << "unexpected active_weight_quant_params size: " << active_weight_quant_params.size();
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
@ -721,7 +722,7 @@ STATUS PostTrainingQuantizer::DoBiasQuant(AnfNodePtr bias, std::shared_ptr<Primi
|
|||
auto quant_data = (int32_t)std::round(raw_datas[i] / bias_scale_tmp);
|
||||
quant_datas[i] = quant_data;
|
||||
}
|
||||
primitive_c->SetInputQuantParam(2, quant_params);
|
||||
primitive_c->AddInputQuantParam(quant_params);
|
||||
auto ret = memcpy_s(bias_param->tensor_addr(), bias_param->tensor_size(), quant_datas, shape_size * sizeof(int32_t));
|
||||
if (ret != EOK) {
|
||||
MS_LOG(ERROR) << "memcpy_s failed.";
|
||||
|
@ -832,19 +833,19 @@ STATUS PostTrainingQuantizer::QuantNode() {
|
|||
}
|
||||
if (input_cnode_primitive_c->IsOutputQuantParamsInited()) {
|
||||
auto quant_param = input_cnode_primitive_c->GetOutputQuantParams().front();
|
||||
primitive_c->SetInputQuantParam(i - 1, quant_param);
|
||||
primitive_c->AddInputQuantParam(quant_param);
|
||||
} else {
|
||||
// do input quant
|
||||
double scale = input_scale[cnode];
|
||||
int32_t zp = input_zero_point[cnode];
|
||||
DoQuantInput(scale, zp, &input_min_max[cnode], primitive_c, i - 1);
|
||||
DoQuantInput(scale, zp, &input_min_max[cnode], primitive_c);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// do input quant
|
||||
double scale = input_scale[cnode];
|
||||
int32_t convInputzeropoint = input_zero_point[cnode];
|
||||
DoQuantInput(scale, convInputzeropoint, &input_min_max[cnode], primitive_c, 0);
|
||||
DoQuantInput(scale, convInputzeropoint, &input_min_max[cnode], primitive_c);
|
||||
// do weight quant
|
||||
auto weight = cnode->input(2);
|
||||
bool perchannel = per_channel_;
|
||||
|
@ -916,6 +917,12 @@ STATUS PostTrainingQuantizer::PreProcess() {
|
|||
if (strategy.CanOpPostQuantized(anf)) {
|
||||
calibrator_->AddQuantizedOp(cnode);
|
||||
}
|
||||
auto primitive_c = GetValueNode<std::shared_ptr<PrimitiveC>>(cnode->input(0));
|
||||
if (primitive_c == nullptr) {
|
||||
MS_LOG(ERROR) << cnode->fullname_with_scope() << " primitive is null";
|
||||
continue;
|
||||
}
|
||||
primitive_c->ClearInputOutputQuantParam();
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
|
|
@ -107,7 +107,7 @@ class PostTrainingQuantizer : public Quantizer {
|
|||
STATUS QuantNode();
|
||||
|
||||
STATUS DoQuantInput(double scale, int32_t zeropoint, struct MaxMin *max_min,
|
||||
std::shared_ptr<PrimitiveC> lite_primitive, const size_t &index);
|
||||
std::shared_ptr<PrimitiveC> lite_primitive);
|
||||
STATUS DoQuantOutput(double scale, int32_t zeropoint, struct MaxMin *max_min, std::shared_ptr<PrimitiveC>);
|
||||
|
||||
STATUS DoWeightQuant(AnfNodePtr weight, std::shared_ptr<PrimitiveC> primitive_c, bool perchannel);
|
||||
|
|
|
@ -283,7 +283,11 @@ STATUS QuantFilter(ParamValueLitePtr weight, std::shared_ptr<PrimitiveC> primiti
|
|||
MS_LOG(ERROR) << "quant_params empty";
|
||||
return RET_ERROR;
|
||||
}
|
||||
primitive_c->SetInputQuantParam(WEIGHT_INDEX, quant_params);
|
||||
if (quantType == QuantType_PostTraining) {
|
||||
primitive_c->AddInputQuantParam(quant_params);
|
||||
} else {
|
||||
primitive_c->SetInputQuantParam(WEIGHT_INDEX, quant_params);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue