From e1c277cdc5129ac1442b40577e42aad8c061ee99 Mon Sep 17 00:00:00 2001
From: zhangxinfeng3 <zhangxinfeng3@huawei.com>
Date: Wed, 3 Mar 2021 15:03:01 +0800
Subject: [PATCH] update sponge

---
 mindspore/ops/operations/sponge_ops.py | 324 ++++++++++++++++++++++---
 1 file changed, 294 insertions(+), 30 deletions(-)

diff --git a/mindspore/ops/operations/sponge_ops.py b/mindspore/ops/operations/sponge_ops.py
index 1b2830cf1bc..3737fce0436 100644
--- a/mindspore/ops/operations/sponge_ops.py
+++ b/mindspore/ops/operations/sponge_ops.py
@@ -18,6 +18,7 @@
 from ..primitive import PrimitiveWithInfer, prim_attr_register
 from ..._checkparam import Validator as validator
 from ...common import dtype as mstype
+from ..._checkparam import Rel
 
 
 class BondForce(PrimitiveWithInfer):
@@ -50,12 +51,30 @@ class BondForce(PrimitiveWithInfer):
         ``GPU``
     Examples:
     """
+
     @prim_attr_register
     def __init__(self, bond_numbers):
         self.bond_numbers = bond_numbers
         self.init_prim_io_names(inputs=['uint_crd_f', 'scaler_f', 'atom_a', 'atom_b', 'bond_k', 'bond_r0'],
                                 outputs=['frc_f'])
         self.add_prim_attr('bond_numbers', self.bond_numbers)
+
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, bond_k_shape, bond_r0_shape):
+        cls_name = self.name
+        # N = uint_crd_f_shape[0]
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            bond_k_shape[0], M, Rel.EQ, "bond_k_shape", cls_name)
+        validator.check_int(
+            bond_r0_shape[0], M, Rel.EQ, "bond_r0_shape", cls_name)
+        return uint_crd_f_shape
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, bond_k_type, bond_r0_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
         validator.check_tensor_dtype_valid('scaler_f_type', scaler_f_type, [mstype.float32], self.name)
@@ -81,6 +100,11 @@ class BondEnergy(PrimitiveWithInfer):
     Inputs:
         Same as operator BondForce().
 
+    .. math::
+
+        dr = (x_1-x_2, y_1-y_2, z_1-z_2)
+        E = k*(|dr| - r_0)^2
+
     Outputs:
         - **bond_ene** (Tensor, float32) - [M, 1], the harmonic potential energy
         for each bond.
@@ -89,12 +113,31 @@ class BondEnergy(PrimitiveWithInfer):
         ``GPU``
     Examples:
     """
+
     @prim_attr_register
     def __init__(self, bond_numbers):
         self.bond_numbers = bond_numbers
         self.init_prim_io_names(inputs=['uint_crd_f', 'scaler_f', 'atom_a', 'atom_b', 'bond_k', 'bond_r0'],
                                 outputs=['bond_ene'])
         self.add_prim_attr('bond_numbers', self.bond_numbers)
+
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, bond_k_shape, bond_r0_shape):
+        cls_name = self.name
+        # N = uint_crd_f_shape[0]
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            bond_k_shape[0], M, Rel.EQ, "bond_k_shape", cls_name)
+        validator.check_int(
+            bond_r0_shape[0], M, Rel.EQ, "bond_r0_shape", cls_name)
+
+        return bond_k_shape
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, bond_k_type, bond_r0_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
         validator.check_tensor_dtype_valid('scaler_f_type', scaler_f_type, [mstype.float32], self.name)
@@ -125,12 +168,30 @@ class BondAtomEnergy(PrimitiveWithInfer):
         ``GPU``
     Examples:
     """
+
     @prim_attr_register
     def __init__(self, bond_numbers):
         self.bond_numbers = bond_numbers
         self.init_prim_io_names(inputs=['uint_crd_f', 'scaler_f', 'atom_a', 'atom_b', 'bond_k', 'bond_r0'],
                                 outputs=['atom_ene'])
         self.add_prim_attr('bond_numbers', self.bond_numbers)
+
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, bond_k_shape, bond_r0_shape):
+        cls_name = self.name
+        N = uint_crd_f_shape[0]
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            bond_k_shape[0], M, Rel.EQ, "bond_k_shape", cls_name)
+        validator.check_int(
+            bond_r0_shape[0], M, Rel.EQ, "bond_r0_shape", cls_name)
+        return [N,]
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, bond_k_type, bond_r0_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
         validator.check_tensor_dtype_valid('scaler_f_type', scaler_f_type, [mstype.float32], self.name)
@@ -167,13 +228,28 @@ class BondForceWithAtomEnergy(PrimitiveWithInfer):
         self.init_prim_io_names(inputs=['uint_crd_f', 'scaler_f', 'atom_a', 'atom_b', 'bond_k', 'bond_r0'],
                                 outputs=['frc_f', 'atom_e'])
         self.add_prim_attr('bond_numbers', self.bond_numbers)
+
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, bond_k_shape, bond_r0_shape):
+        cls_name = self.name
+        N = uint_crd_f_shape[0]
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            bond_k_shape[0], M, Rel.EQ, "bond_k_shape", cls_name)
+        validator.check_int(
+            bond_r0_shape[0], M, Rel.EQ, "bond_r0_shape", cls_name)
+        return uint_crd_f_shape, [N,]
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, bond_k_type, bond_r0_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
         validator.check_tensor_dtype_valid('scaler_f_type', scaler_f_type, [mstype.float32], self.name)
-
         validator.check_tensor_dtype_valid('atom_a_type', atom_a_type, [mstype.int32], self.name)
         validator.check_tensor_dtype_valid('atom_b_type', atom_b_type, [mstype.int32], self.name)
-
         validator.check_tensor_dtype_valid('bond_k_type', bond_k_type, [mstype.float32], self.name)
         validator.check_tensor_dtype_valid('bond_r0_type', bond_r0_type, [mstype.float32], self.name)
         return bond_r0_type, bond_r0_type
@@ -213,17 +289,33 @@ class BondForceWithAtomVirial(PrimitiveWithInfer):
         self.init_prim_io_names(inputs=['uint_crd_f', 'scaler_f', 'atom_a', 'atom_b', 'bond_k', 'bond_r0'],
                                 outputs=['frc_f', 'atom_v'])
         self.add_prim_attr('bond_numbers', self.bond_numbers)
+
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, bond_k_shape, bond_r0_shape):
+        cls_name = self.name
+        N = uint_crd_f_shape[0]
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            bond_k_shape[0], M, Rel.EQ, "bond_k_shape", cls_name)
+        validator.check_int(
+            bond_r0_shape[0], M, Rel.EQ, "bond_r0_shape", cls_name)
+        return uint_crd_f_shape, [N,]
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, bond_k_type, bond_r0_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
         validator.check_tensor_dtype_valid('scaler_f_type', scaler_f_type, [mstype.float32], self.name)
-
         validator.check_tensor_dtype_valid('atom_a_type', atom_a_type, [mstype.int32], self.name)
         validator.check_tensor_dtype_valid('atom_b_type', atom_b_type, [mstype.int32], self.name)
-
         validator.check_tensor_dtype_valid('bond_k_type', bond_k_type, [mstype.float32], self.name)
         validator.check_tensor_dtype_valid('bond_r0_type', bond_r0_type, [mstype.float32], self.name)
         return bond_r0_type, bond_r0_type
 
+
 class DihedralForce(PrimitiveWithInfer):
     """
     DihedralForce:
@@ -259,18 +351,18 @@ class DihedralForce(PrimitiveWithInfer):
     Inputs:
         - **uint_crd_f** (Tensor, uint32) - [N, 3], the unsigned int coordinates
         value of each atom.
-        - **scalar_f** (Tensor, float32) - [3, 1], the 3-D scale factor between
+        - **scalar_f** (Tensor, float32) - [3, ], the 3-D scale factor between
         the real space float coordinates and the unsigned int coordinates.
-        - **atom_a** (Tensor, int32) - [M, 1], the 1st atom index of each dihedral.
-        - **atom_b** (Tensor, int32) - [M, 1], the 2nd atom index of each dihedral.
-        - **atom_c** (Tensor, int32) - [M, 1], the 3rd atom index of each dihedral.
-        - **atom_d** (Tensor, int32) - [M, 1], the 4th atom index of each dihedral.
+        - **atom_a** (Tensor, int32) - [M, ], the 1st atom index of each dihedral.
+        - **atom_b** (Tensor, int32) - [M, ], the 2nd atom index of each dihedral.
+        - **atom_c** (Tensor, int32) - [M, ], the 3rd atom index of each dihedral.
+        - **atom_d** (Tensor, int32) - [M, ], the 4th atom index of each dihedral.
         4 atoms are connected in the form a-b-c-d.
-        - **ipn** (Tensor, int32) - [M, 1], the period of dihedral angle of each dihedral.
-        - **pk** (Tensor, float32) - [M, 1], the force constant of each dihedral.
-        - **gamc** (Tensor, float32) - [M, 1], k*cos(phi_0) of each dihedral.
-        - **gams** (Tensor, float32) - [M, 1], k*sin(phi_0) of each dihedral.
-        - **pn** (Tensor, float32) - [M, 1], the floating point form of ipn.
+        - **ipn** (Tensor, int32) - [M, ], the period of dihedral angle of each dihedral.
+        - **pk** (Tensor, float32) - [M, ], the force constant of each dihedral.
+        - **gamc** (Tensor, float32) - [M, ], k*cos(phi_0) of each dihedral.
+        - **gams** (Tensor, float32) - [M, ], k*sin(phi_0) of each dihedral.
+        - **pn** (Tensor, float32) - [M, ], the floating point form of ipn.
 
     Outputs:
         - **frc_f** (Tensor, float32) - [N, 3], the force felt by each atom.
@@ -289,6 +381,29 @@ class DihedralForce(PrimitiveWithInfer):
                                 outputs=['frc_f'])
         self.add_prim_attr('dihedral_numbers', self.dihedral_numbers)
 
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, atom_c_shape, atom_d_shape,
+                    ipn_shape, pk_shape, gamc_shape, gams_shape, pn_shape):
+        cls_name = self.name
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_a_shape[0], M, Rel.EQ, "atom_a_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            atom_c_shape[0], M, Rel.EQ, "atom_c_shape", cls_name)
+        validator.check_int(
+            atom_d_shape[0], M, Rel.EQ, "atom_d_shape", cls_name)
+        validator.check_int(ipn_shape[0], M, Rel.EQ, "ipn_shape", cls_name)
+        validator.check_int(pk_shape[0], M, Rel.EQ, "pk_shape", cls_name)
+        validator.check_int(gamc_shape[0], M, Rel.EQ, "gamc_shape", cls_name)
+        validator.check_int(gams_shape[0], M, Rel.EQ, "gams_shape", cls_name)
+        validator.check_int(pn_shape[0], M, Rel.EQ, "pn_shape", cls_name)
+        return uint_crd_f_shape
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, atom_c_type, atom_d_type,
                     ipn_type, pk_type, gamc_type, gams_type, pn_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
@@ -302,7 +417,6 @@ class DihedralForce(PrimitiveWithInfer):
         validator.check_tensor_dtype_valid('gamc_type', gamc_type, [mstype.float32], self.name)
         validator.check_tensor_dtype_valid('gams_type', gams_type, [mstype.float32], self.name)
         validator.check_tensor_dtype_valid('pn_type', pn_type, [mstype.float32], self.name)
-
         return pn_type
 
 
@@ -321,7 +435,7 @@ class DihedralEnergy(PrimitiveWithInfer):
         Same as operator DihedralForce().
 
     Outputs:
-        - **ene** (Tensor, float32) - [M, 1], the potential energy for each
+        - **ene** (Tensor, float32) - [M, ], the potential energy for each
         dihedral term.
 
     Supported Platforms:
@@ -338,6 +452,29 @@ class DihedralEnergy(PrimitiveWithInfer):
                                 outputs=['ene'])
         self.add_prim_attr('dihedral_numbers', self.dihedral_numbers)
 
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, atom_c_shape, atom_d_shape,
+                    ipn_shape, pk_shape, gamc_shape, gams_shape, pn_shape):
+        cls_name = self.name
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_a_shape[0], M, Rel.EQ, "atom_a_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            atom_c_shape[0], M, Rel.EQ, "atom_c_shape", cls_name)
+        validator.check_int(
+            atom_d_shape[0], M, Rel.EQ, "atom_d_shape", cls_name)
+        validator.check_int(ipn_shape[0], M, Rel.EQ, "ipn_shape", cls_name)
+        validator.check_int(pk_shape[0], M, Rel.EQ, "pk_shape", cls_name)
+        validator.check_int(gamc_shape[0], M, Rel.EQ, "gamc_shape", cls_name)
+        validator.check_int(gams_shape[0], M, Rel.EQ, "gams_shape", cls_name)
+        validator.check_int(pn_shape[0], M, Rel.EQ, "pn_shape", cls_name)
+        return [M,]
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, atom_c_type, atom_d_type,
                     ipn_type, pk_type, gamc_type, gams_type, pn_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
@@ -351,7 +488,6 @@ class DihedralEnergy(PrimitiveWithInfer):
         validator.check_tensor_dtype_valid('gamc_type', gamc_type, [mstype.float32], self.name)
         validator.check_tensor_dtype_valid('gams_type', gams_type, [mstype.float32], self.name)
         validator.check_tensor_dtype_valid('pn_type', pn_type, [mstype.float32], self.name)
-
         return pn_type
 
 
@@ -368,7 +504,7 @@ class DihedralAtomEnergy(PrimitiveWithInfer):
         Same as operator DihedralEnergy().
 
     Outputs:
-        - **ene** (Tensor, float32) - [N, 1], the accumulated potential
+        - **ene** (Tensor, float32) - [N, ], the accumulated potential
         energy for each atom.
 
     Supported Platforms:
@@ -385,6 +521,30 @@ class DihedralAtomEnergy(PrimitiveWithInfer):
                                 outputs=['ene'])
         self.add_prim_attr('dihedral_numbers', self.dihedral_numbers)
 
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, atom_c_shape, atom_d_shape,
+                    ipn_shape, pk_shape, gamc_shape, gams_shape, pn_shape):
+        cls_name = self.name
+        N = uint_crd_f_shape[0]
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_a_shape[0], M, Rel.EQ, "atom_a_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            atom_c_shape[0], M, Rel.EQ, "atom_c_shape", cls_name)
+        validator.check_int(
+            atom_d_shape[0], M, Rel.EQ, "atom_d_shape", cls_name)
+        validator.check_int(ipn_shape[0], M, Rel.EQ, "ipn_shape", cls_name)
+        validator.check_int(pk_shape[0], M, Rel.EQ, "pk_shape", cls_name)
+        validator.check_int(gamc_shape[0], M, Rel.EQ, "gamc_shape", cls_name)
+        validator.check_int(gams_shape[0], M, Rel.EQ, "gams_shape", cls_name)
+        validator.check_int(pn_shape[0], M, Rel.EQ, "pn_shape", cls_name)
+        return [N,]
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, atom_c_type, atom_d_type,
                     ipn_type, pk_type, gamc_type, gams_type, pn_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
@@ -398,7 +558,6 @@ class DihedralAtomEnergy(PrimitiveWithInfer):
         validator.check_tensor_dtype_valid('gamc_type', gamc_type, [mstype.float32], self.name)
         validator.check_tensor_dtype_valid('gams_type', gams_type, [mstype.float32], self.name)
         validator.check_tensor_dtype_valid('pn_type', pn_type, [mstype.float32], self.name)
-
         return pn_type
 
 
@@ -415,7 +574,7 @@ class DihedralForceWithAtomEnergy(PrimitiveWithInfer):
 
     Outputs:
         - **frc_f** (Tensor, float32) - [N, 3], same as operator DihedralForce().
-        - **ene** (Tensor, float32) - [N, 1], same as operator DihedralAtomEnergy().
+        - **ene** (Tensor, float32) - [N, ], same as operator DihedralAtomEnergy().
 
     Supported Platforms:
         ``GPU``
@@ -431,6 +590,30 @@ class DihedralForceWithAtomEnergy(PrimitiveWithInfer):
                                 outputs=['frc_f', 'ene'])
         self.add_prim_attr('dihedral_numbers', self.dihedral_numbers)
 
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, atom_c_shape, atom_d_shape,
+                    ipn_shape, pk_shape, gamc_shape, gams_shape, pn_shape):
+        cls_name = self.name
+        N = uint_crd_f_shape[0]
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_a_shape[0], M, Rel.EQ, "atom_a_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            atom_c_shape[0], M, Rel.EQ, "atom_c_shape", cls_name)
+        validator.check_int(
+            atom_d_shape[0], M, Rel.EQ, "atom_d_shape", cls_name)
+        validator.check_int(ipn_shape[0], M, Rel.EQ, "ipn_shape", cls_name)
+        validator.check_int(pk_shape[0], M, Rel.EQ, "pk_shape", cls_name)
+        validator.check_int(gamc_shape[0], M, Rel.EQ, "gamc_shape", cls_name)
+        validator.check_int(gams_shape[0], M, Rel.EQ, "gams_shape", cls_name)
+        validator.check_int(pn_shape[0], M, Rel.EQ, "pn_shape", cls_name)
+        return uint_crd_f_shape, [N,]
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, atom_c_type, atom_d_type,
                     ipn_type, pk_type, gamc_type, gams_type, pn_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
@@ -444,7 +627,6 @@ class DihedralForceWithAtomEnergy(PrimitiveWithInfer):
         validator.check_tensor_dtype_valid('gamc_type', gamc_type, [mstype.float32], self.name)
         validator.check_tensor_dtype_valid('gams_type', gams_type, [mstype.float32], self.name)
         validator.check_tensor_dtype_valid('pn_type', pn_type, [mstype.float32], self.name)
-
         return pn_type, pn_type
 
 
@@ -470,14 +652,14 @@ class AngleForce(PrimitiveWithInfer):
     Inputs:
         - **uint_crd_f** (Tensor, uint32) - [N, 3], the unsigned int coordinate
         value of each atom.
-        - **scaler_f** (Tensor, float32) - [3, 1], the 3-D scale factor between
+        - **scaler_f** (Tensor, float32) - [3, ], the 3-D scale factor between
         the real space float coordinates and the unsigned int coordinates.
-        - **atom_a** (Tensor, int32) - [M, 1], the 1st atom index of each angle.
-        - **atom_b** (Tensor, int32) - [M, 1], the 2nd and the central atom index
+        - **atom_a** (Tensor, int32) - [M, ], the 1st atom index of each angle.
+        - **atom_b** (Tensor, int32) - [M, ], the 2nd and the central atom index
         of each angle.
-        - **atom_c** (Tensor, int32) - [M, 1], the 3rd atom index of each angle.
-        - **angle_k** (Tensor, float32) - [M, 1], the force constant for each angle.
-        - **angle_theta0** (Tensor, float32) - [M, 1], the equilibrium position value
+        - **atom_c** (Tensor, int32) - [M, ], the 3rd atom index of each angle.
+        - **angle_k** (Tensor, float32) - [M, ], the force constant for each angle.
+        - **angle_theta0** (Tensor, float32) - [M, ], the equilibrium position value
         for each angle.
 
     Outputs:
@@ -497,6 +679,26 @@ class AngleForce(PrimitiveWithInfer):
                                 outputs=['frc_f'])
         self.add_prim_attr('angle_numbers', self.angle_numbers)
 
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, atom_c_shape, angle_k_shape,
+                    angle_theta0_shape):
+        cls_name = self.name
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_a_shape[0], M, Rel.EQ, "atom_a_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            atom_c_shape[0], M, Rel.EQ, "atom_c_shape", cls_name)
+        validator.check_int(
+            angle_k_shape[0], M, Rel.EQ, "angle_k_shape", cls_name)
+        validator.check_int(
+            angle_theta0_shape[0], M, Rel.EQ, "angle_theta0_shape", cls_name)
+        return uint_crd_f_shape
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, atom_c_type, angle_k_type,
                     angle_theta0_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
@@ -526,7 +728,7 @@ class AngleEnergy(PrimitiveWithInfer):
         Same as operator AngleForce().
 
     Outputs:
-        - **ene** (Tensor, float32) - [M, 1], the potential energy for
+        - **ene** (Tensor, float32) - [M, ], the potential energy for
         each angle term.
 
     Supported Platforms:
@@ -543,6 +745,26 @@ class AngleEnergy(PrimitiveWithInfer):
                                 outputs=['ene'])
         self.add_prim_attr('angle_numbers', self.angle_numbers)
 
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, atom_c_shape, angle_k_shape,
+                    angle_theta0_shape):
+        cls_name = self.name
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_a_shape[0], M, Rel.EQ, "atom_a_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            atom_c_shape[0], M, Rel.EQ, "atom_c_shape", cls_name)
+        validator.check_int(
+            angle_k_shape[0], M, Rel.EQ, "angle_k_shape", cls_name)
+        validator.check_int(
+            angle_theta0_shape[0], M, Rel.EQ, "angle_theta0_shape", cls_name)
+        return [M,]
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, atom_c_type, angle_k_type,
                     angle_theta0_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
@@ -568,7 +790,7 @@ class AngleAtomEnergy(PrimitiveWithInfer):
         Same as operator AngleForce().
 
     Outputs:
-        - **ene** (Tensor, float32) - [N, 1], the accumulated potential energy
+        - **ene** (Tensor, float32) - [N, ], the accumulated potential energy
         for each atom.
 
     Supported Platforms:
@@ -585,6 +807,27 @@ class AngleAtomEnergy(PrimitiveWithInfer):
                                 outputs=['ene'])
         self.add_prim_attr('angle_numbers', self.angle_numbers)
 
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, atom_c_shape, angle_k_shape,
+                    angle_theta0_shape):
+        cls_name = self.name
+        N = uint_crd_f_shape[0]
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_a_shape[0], M, Rel.EQ, "atom_a_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            atom_c_shape[0], M, Rel.EQ, "atom_c_shape", cls_name)
+        validator.check_int(
+            angle_k_shape[0], M, Rel.EQ, "angle_k_shape", cls_name)
+        validator.check_int(
+            angle_theta0_shape[0], M, Rel.EQ, "angle_theta0_shape", cls_name)
+        return [N,]
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, atom_c_type, angle_k_type,
                     angle_theta0_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)
@@ -610,7 +853,7 @@ class AngleForceWithAtomEnergy(PrimitiveWithInfer):
 
     Outputs:
         - **frc_f** (Tensor, float32) - [N, 3], same as operator AngleForce().
-        - **ene** (Tensor, float) - [N, 1], same as operator AngleAtomEnergy().
+        - **ene** (Tensor, float) - [N, ], same as operator AngleAtomEnergy().
 
     Supported Platforms:
         ``GPU``
@@ -626,6 +869,27 @@ class AngleForceWithAtomEnergy(PrimitiveWithInfer):
                                 outputs=['frc_f', 'ene'])
         self.add_prim_attr('angle_numbers', self.angle_numbers)
 
+    def infer_shape(self, uint_crd_f_shape, scaler_f_shape, atom_a_shape, atom_b_shape, atom_c_shape, angle_k_shape,
+                    angle_theta0_shape):
+        cls_name = self.name
+        N = uint_crd_f_shape[0]
+        M = atom_a_shape[0]
+        validator.check_int(
+            uint_crd_f_shape[1], 3, Rel.EQ, "uint_crd_f_shape", cls_name)
+        validator.check_int(
+            scaler_f_shape[0], 3, Rel.EQ, "scaler_f_shape", cls_name)
+        validator.check_int(
+            atom_a_shape[0], M, Rel.EQ, "atom_a_shape", cls_name)
+        validator.check_int(
+            atom_b_shape[0], M, Rel.EQ, "atom_b_shape", cls_name)
+        validator.check_int(
+            atom_c_shape[0], M, Rel.EQ, "atom_c_shape", cls_name)
+        validator.check_int(
+            angle_k_shape[0], M, Rel.EQ, "angle_k_shape", cls_name)
+        validator.check_int(
+            angle_theta0_shape[0], M, Rel.EQ, "angle_theta0_shape", cls_name)
+        return uint_crd_f_shape, [N,]
+
     def infer_dtype(self, uint_crd_f_dtype, scaler_f_type, atom_a_type, atom_b_type, atom_c_type, angle_k_type,
                     angle_theta0_type):
         validator.check_tensor_dtype_valid('uint_crd_f_dtype', uint_crd_f_dtype, [mstype.uint32], self.name)