!4349 [MS][LITE][Develop]compare ops support quant

Merge pull request !4349 from chenjianping/lite_dev2
This commit is contained in:
mindspore-ci-bot 2020-08-12 19:16:09 +08:00 committed by Gitee
commit 874972caf8
6 changed files with 145 additions and 40 deletions

View File

@ -15,7 +15,6 @@
*/
#include "src/runtime/kernel/arm/int8/arithmetic_int8.h"
#include "src/runtime/kernel/arm/nnacl/int8/arithmetic_int8.h"
#include "src/runtime/kernel/arm/nnacl/arithmetic_common.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
@ -42,7 +41,7 @@ int ArithmeticsInt8Launch(int thread_id, LiteParallelGroupEnv *penv, void *cdata
auto error_code = arithmetic_kernel->DoArithmetic(thread_id);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "ArithmeticsRun error thread_id[" << thread_id << "] error_code[" << error_code << "]";
return RET_ERROR;
return error_code;
}
return RET_OK;
}
@ -79,28 +78,43 @@ ArithmeticInt8CPUKernel::~ArithmeticInt8CPUKernel() {
int ArithmeticInt8CPUKernel::Init() {
switch (op_parameter_->type_) {
case PrimitiveType_Equal:
arithmetic_run_ = ElementEqual;
arithmetic_run_ = ElementEqualInt8;
break;
case PrimitiveType_NotEqual:
arithmetic_run_ = ElementNotEqual;
arithmetic_run_ = ElementNotEqualInt8;
break;
case PrimitiveType_Less:
arithmetic_run_ = ElementLess;
arithmetic_run_ = ElementLessInt8;
break;
case PrimitiveType_LessEqual:
arithmetic_run_ = ElementLessEqual;
arithmetic_run_ = ElementLessEqualInt8;
break;
case PrimitiveType_Greater:
arithmetic_run_ = ElementGreater;
arithmetic_run_ = ElementGreaterInt8;
break;
case PrimitiveType_GreaterEqual:
arithmetic_run_ = ElementGreaterEqual;
arithmetic_run_ = ElementGreaterEqualInt8;
break;
default:
MS_LOG(ERROR) << "Error Operator type " << op_parameter_->type_;
arithmetic_run_ = nullptr;
return RET_PARAM_INVALID;
}
auto *input0_tensor = in_tensors_.at(0);
auto in0_quant_args = input0_tensor->GetQuantParams();
quant_args_.in0_args_.scale_ = in0_quant_args.front().scale;
quant_args_.in0_args_.zp_ = in0_quant_args.front().zeroPoint;
auto *input1_tensor = in_tensors_.at(1);
auto in1_quant_args = input1_tensor->GetQuantParams();
quant_args_.in1_args_.scale_ = in1_quant_args.front().scale;
quant_args_.in1_args_.zp_ = in1_quant_args.front().zeroPoint;
auto *out_tensor = out_tensors_.at(kOutputIndex);
auto out_quant_args = out_tensor->GetQuantParams();
quant_args_.out_args_.scale_ = out_quant_args.front().scale;
quant_args_.out_args_.zp_ = out_quant_args.front().zeroPoint;
if (!InferShapeDone()) {
return RET_OK;
}
@ -142,16 +156,16 @@ int ArithmeticInt8CPUKernel::DoArithmetic(int thread_id) {
}
int error_code = arithmetic_run_(tile_data0_ + stride * thread_id, tile_data1_ + stride * thread_id,
output_data + stride * thread_id, count);
output_data + stride * thread_id, count, &quant_args_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "Arithmetic run fail! ret: " << error_code;
return RET_ERROR;
return error_code;
}
} else if (arithmetic_run_ != nullptr) {
int error_code = arithmetic_run_(input0_data, input1_data1, output_data, element_num);
int error_code = arithmetic_run_(input0_data, input1_data1, output_data, element_num, &quant_args_);
if (error_code != RET_OK) {
MS_LOG(ERROR) << "Arithmetic run fail!ret: " << error_code;
return RET_ERROR;
return error_code;
}
} else {
MS_LOG(ERROR) << "arithmetic_run function is nullptr!";

View File

@ -20,10 +20,12 @@
#include <vector>
#include "src/lite_kernel.h"
#include "schema/model_generated.h"
#include "src/runtime/kernel/arm/nnacl/int8/arithmetic_int8.h"
namespace mindspore::kernel {
class ArithmeticInt8CPUKernel : public LiteKernel {
typedef int (*ArithmeticRunInt8)(int8_t *input0, int8_t *input1, int8_t *output, int element_size);
typedef int (*ArithmeticRunInt8)(int8_t *input0, int8_t *input1, int8_t *output, int element_size,
ArithmeticQuantArg *quant_arg);
public:
ArithmeticInt8CPUKernel(OpParameter *parameter, const std::vector<lite::tensor::Tensor *> &inputs,
@ -39,10 +41,10 @@ class ArithmeticInt8CPUKernel : public LiteKernel {
private:
void FreeTileData();
int thread_count_;
int8_t *tile_data0_;
int8_t *tile_data1_;
ArithmeticRunInt8 arithmetic_run_;
ArithmeticQuantArg quant_args_;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_ARITHMETIC_INT8_H_

View File

@ -17,6 +17,8 @@
#include "nnacl/fp32/arithmetic.h"
#include <math.h>
#define ACCURACY_DATA 0.00000001
int ElementMul(float *input0, float *input1, float *output, int element_size) {
int block_mod = element_size % C4NUM;
int block_c4 = element_size - block_mod;
@ -549,6 +551,14 @@ int BroadcastMinimum(float *input0, float *input1, float *tile_input0, float *ti
return ElementMinimum(tile_input0, tile_input1, output, element_size);
}
float FloatNotEqualCheck(float in0, float in1) {
float minus = in0 - in1;
if (minus <= ACCURACY_DATA && minus >= -ACCURACY_DATA) {
return (float)false;
}
return (float)true;
}
int ElementNotEqual(float *input0, float *input1, float *output, int element_size) {
int block_mod = element_size % C4NUM;
int block_c4 = element_size - block_mod;
@ -563,10 +573,10 @@ int ElementNotEqual(float *input0, float *input1, float *output, int element_siz
float32x4_t vout = vbslq_f32(vceqq_f32(vin0, vin1), vfalse, vtrue);
vst1q_f32(output, vout);
#else
output[0] = (float)(input0[0] != input1[0]);
output[1] = (float)(input0[1] != input1[1]);
output[2] = (float)(input0[2] != input1[2]);
output[3] = (float)(input0[3] != input1[3]);
output[0] = FloatNotEqualCheck(input0[0], input1[0]);
output[1] = FloatNotEqualCheck(input0[1], input1[1]);
output[2] = FloatNotEqualCheck(input0[2], input1[2]);
output[3] = FloatNotEqualCheck(input0[3], input1[3]);
#endif
input0 += C4NUM;
input1 += C4NUM;
@ -584,6 +594,14 @@ int BroadcastNotEqual(float *input0, float *input1, float *tile_input0, float *t
return ElementNotEqual(tile_input0, tile_input1, output, element_size);
}
float FloatEqualCheck(float in0, float in1) {
float minus = in0 - in1;
if (minus <= ACCURACY_DATA && minus >= -ACCURACY_DATA) {
return (float)true;
}
return (float)false;
}
int ElementEqual(float *input0, float *input1, float *output, int element_size) {
int block_mod = element_size % C4NUM;
int block_c4 = element_size - block_mod;
@ -598,10 +616,10 @@ int ElementEqual(float *input0, float *input1, float *output, int element_size)
float32x4_t vout = vbslq_f32(vceqq_f32(vin0, vin1), vtrue, vfalse);
vst1q_f32(output, vout);
#else
output[0] = (float)(input0[0] == input1[0]);
output[1] = (float)(input0[1] == input1[1]);
output[2] = (float)(input0[2] == input1[2]);
output[3] = (float)(input0[3] == input1[3]);
output[0] = FloatEqualCheck(input0[0], input1[0]);
output[1] = FloatEqualCheck(input0[1], input1[1]);
output[2] = FloatEqualCheck(input0[2], input1[2]);
output[3] = FloatEqualCheck(input0[3], input1[3]);
#endif
input0 += C4NUM;
input1 += C4NUM;
@ -758,3 +776,5 @@ int BroadcastGreaterEqual(float *input0, float *input1, float *tile_input0, floa
TileDimensions(input0, input1, tile_input0, tile_input1, param);
return ElementGreaterEqual(tile_input0, tile_input1, output, element_size);
}
#undef ACCURACY_DATA

View File

@ -20,44 +20,102 @@
#endif
#include "nnacl/errorcode.h"
int ElementNotEqual(int8_t *input0, int8_t *input1, int8_t *output, int element_size) {
#define ACCURACY_DATA 0.00000001
int ElementNotEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size,
ArithmeticQuantArg *quant_arg) {
float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_;
float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_;
float output_inverse_scale = 1.f / quant_arg->out_args_.scale_;
float out_zp = quant_arg->out_args_.zp_;
for (int index = 0; index < element_size; ++index) {
output[index] = (int8_t)(input0[index] != input1[index]);
float in0_real = input0[index] * quant_arg->in0_args_.scale_ + in0_bias;
float in1_real = input1[index] * quant_arg->in1_args_.scale_ + in1_bias;
float minus_inputs = in0_real - in1_real;
float out_real = (float)true;
if (minus_inputs >= -ACCURACY_DATA && minus_inputs <= ACCURACY_DATA) {
out_real = (float)false;
}
output[index] = (int8_t)(out_real * output_inverse_scale + out_zp);
}
return NNACL_OK;
}
int ElementEqual(int8_t *input0, int8_t *input1, int8_t *output, int element_size) {
int ElementEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size, ArithmeticQuantArg *quant_arg) {
float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_;
float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_;
float output_inverse_scale = 1.f / quant_arg->out_args_.scale_;
float out_zp = quant_arg->out_args_.zp_;
for (int index = 0; index < element_size; ++index) {
output[index] = (int8_t)(input0[index] == input1[index]);
float in0_real = input0[index] * quant_arg->in0_args_.scale_ + in0_bias;
float in1_real = input1[index] * quant_arg->in1_args_.scale_ + in1_bias;
float minus_inputs = in0_real - in1_real;
float out_real = (float)false;
if (minus_inputs >= -ACCURACY_DATA && minus_inputs <= ACCURACY_DATA) {
out_real = (float)true;
}
output[index] = (int8_t)(out_real * output_inverse_scale + out_zp);
}
return NNACL_OK;
}
int ElementLess(int8_t *input0, int8_t *input1, int8_t *output, int element_size) {
int ElementLessInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size, ArithmeticQuantArg *quant_arg) {
float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_;
float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_;
float output_inverse_scale = 1.f / quant_arg->out_args_.scale_;
float out_zp = quant_arg->out_args_.zp_;
for (int index = 0; index < element_size; ++index) {
output[index] = (int8_t)(input0[index] < input1[index]);
float in0_real = input0[index] * quant_arg->in0_args_.scale_ + in0_bias;
float in1_real = input1[index] * quant_arg->in1_args_.scale_ + in1_bias;
float out_real = (float)(in0_real < in1_real);
output[index] = (int8_t)(out_real * output_inverse_scale + out_zp);
}
return NNACL_OK;
}
int ElementLessEqual(int8_t *input0, int8_t *input1, int8_t *output, int element_size) {
int ElementLessEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size,
ArithmeticQuantArg *quant_arg) {
float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_;
float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_;
float output_inverse_scale = 1.f / quant_arg->out_args_.scale_;
float out_zp = quant_arg->out_args_.zp_;
for (int index = 0; index < element_size; ++index) {
output[index] = (int8_t)(input0[index] <= input1[index]);
float in0_real = input0[index] * quant_arg->in0_args_.scale_ + in0_bias;
float in1_real = input1[index] * quant_arg->in1_args_.scale_ + in1_bias;
float out_real = (float)(in0_real <= in1_real);
output[index] = (int8_t)(out_real * output_inverse_scale + out_zp);
}
return NNACL_OK;
}
int ElementGreater(int8_t *input0, int8_t *input1, int8_t *output, int element_size) {
int ElementGreaterInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size,
ArithmeticQuantArg *quant_arg) {
float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_;
float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_;
float output_inverse_scale = 1.f / quant_arg->out_args_.scale_;
float out_zp = quant_arg->out_args_.zp_;
for (int index = 0; index < element_size; ++index) {
output[index] = (int8_t)(input0[index] > input1[index]);
float in0_real = input0[index] * quant_arg->in0_args_.scale_ + in0_bias;
float in1_real = input1[index] * quant_arg->in1_args_.scale_ + in1_bias;
float out_real = (float)(in0_real > in1_real);
output[index] = (int8_t)(out_real * output_inverse_scale + out_zp);
}
return NNACL_OK;
}
int ElementGreaterEqual(int8_t *input0, int8_t *input1, int8_t *output, int element_size) {
int ElementGreaterEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size,
ArithmeticQuantArg *quant_arg) {
float in0_bias = -quant_arg->in0_args_.zp_ * quant_arg->in0_args_.scale_;
float in1_bias = -quant_arg->in1_args_.zp_ * quant_arg->in1_args_.scale_;
float output_inverse_scale = 1.f / quant_arg->out_args_.scale_;
float out_zp = quant_arg->out_args_.zp_;
for (int index = 0; index < element_size; ++index) {
output[index] = (int8_t)(input0[index] >= input1[index]);
float in0_real = input0[index] * quant_arg->in0_args_.scale_ + in0_bias;
float in1_real = input1[index] * quant_arg->in1_args_.scale_ + in1_bias;
float out_real = (float)(in0_real >= in1_real);
output[index] = (int8_t)(out_real * output_inverse_scale + out_zp);
}
return NNACL_OK;
}
#undef ACCURACY_DATA

View File

@ -17,16 +17,21 @@
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_INT8_ARITHMETIC_INT8_H_
#include "nnacl/op_base.h"
#include "nnacl/quantization/quantize.h"
int ElementNotEqual(int8_t *input0, int8_t *input1, int8_t *output, int element_size);
int ElementNotEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size,
ArithmeticQuantArg *quant_arg);
int ElementEqual(int8_t *input0, int8_t *input1, int8_t *output, int element_size);
int ElementEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size, ArithmeticQuantArg *quant_arg);
int ElementLess(int8_t *input0, int8_t *input1, int8_t *output, int element_size);
int ElementLessInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size, ArithmeticQuantArg *quant_arg);
int ElementLessEqual(int8_t *input0, int8_t *input1, int8_t *output, int element_size);
int ElementLessEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size,
ArithmeticQuantArg *quant_arg);
int ElementGreater(int8_t *input0, int8_t *input1, int8_t *output, int element_size);
int ElementGreaterInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size,
ArithmeticQuantArg *quant_arg);
int ElementGreaterEqual(int8_t *input0, int8_t *input1, int8_t *output, int element_size);
int ElementGreaterEqualInt8(int8_t *input0, int8_t *input1, int8_t *output, int element_size,
ArithmeticQuantArg *quant_arg);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_INT8_ARITHMETIC_INT8_H_

View File

@ -193,6 +193,12 @@ typedef struct SubQuantArg {
int right_shift_out_;
} SubQuantArg;
typedef struct ArithmeticQuantArg {
QuantArg in0_args_;
QuantArg in1_args_;
QuantArg out_args_;
} ArithmeticQuantArg;
void QuantizeMultiplier(double double_multiplier, int32_t *quantized_multiplier, int *shift);
inline void QuantizeMultiplierSmallerThanOne(double double_multiplier, int32_t *quantized_multiplier,