forked from mindspore-Ecosystem/mindspore
!5050 [MS][LITE][Develop]Fp16 conv1x1 inputptr memeset bug
Merge pull request !5050 from ling/bug
This commit is contained in:
commit
86beb6e94b
|
@ -124,6 +124,20 @@ int DeConv2D::InferShape(std::vector<lite::tensor::Tensor *> inputs_, std::vecto
|
|||
}
|
||||
std::vector<int> out_shape = {output_n, output_h, output_w, output_c};
|
||||
output->set_shape(out_shape);
|
||||
|
||||
if (pad_mode == schema::PadMode_SAME) {
|
||||
pad_h_ = ((input_h - 1) * stride_h + (kernel_h - 1) * dilate_h + 1 - output_h) / 2;
|
||||
pad_w_ = ((input_w - 1) * stride_w + (kernel_w - 1) * dilate_w + 1 - output_w) / 2;
|
||||
} else if (pad_mode == schema::PadMode_VALID) {
|
||||
pad_h_ = 0;
|
||||
pad_w_ = 0;
|
||||
} else if (pad_mode == schema::PadMode_CAFFE) {
|
||||
pad_h_ = pad_u_;
|
||||
pad_w_ = pad_l_;
|
||||
} else {
|
||||
MS_LOG(ERROR) << "unsupported pad mode for deconv";
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
} // namespace lite
|
||||
|
|
|
@ -74,12 +74,16 @@ class DeConv2D : public PrimitiveC {
|
|||
int PadDown() const { return this->pad_d_; }
|
||||
int PadLeft() const { return this->pad_l_; }
|
||||
int PadRight() const { return this->pad_r_; }
|
||||
int PadH() const { return this->pad_h_; }
|
||||
int PadW() const { return this->pad_w_; }
|
||||
|
||||
protected:
|
||||
int pad_u_ = 0;
|
||||
int pad_d_ = 0;
|
||||
int pad_l_ = 0;
|
||||
int pad_r_ = 0;
|
||||
int pad_h_ = 0;
|
||||
int pad_w_ = 0;
|
||||
};
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -506,6 +506,8 @@ OpParameter *PopulateDeconvParameter(const mindspore::lite::PrimitiveC *primitiv
|
|||
conv_param->pad_d_ = deconv_lite_primitive->PadDown();
|
||||
conv_param->pad_l_ = deconv_lite_primitive->PadLeft();
|
||||
conv_param->pad_r_ = deconv_lite_primitive->PadRight();
|
||||
conv_param->pad_h_ = deconv_lite_primitive->PadH();
|
||||
conv_param->pad_w_ = deconv_lite_primitive->PadW();
|
||||
conv_param->dilation_h_ = conv_primitive->GetDilateH();
|
||||
conv_param->dilation_w_ = conv_primitive->GetDilateW();
|
||||
auto act_type = conv_primitive->GetActivationType();
|
||||
|
@ -523,26 +525,6 @@ OpParameter *PopulateDeconvParameter(const mindspore::lite::PrimitiveC *primitiv
|
|||
conv_param->is_relu6_ = false;
|
||||
break;
|
||||
}
|
||||
|
||||
auto pad_mode = conv_primitive->GetPadMode();
|
||||
switch (pad_mode) {
|
||||
case schema::PadMode_SAME:
|
||||
conv_param->pad_h_ = (conv_param->kernel_h_ - 1) / 2;
|
||||
conv_param->pad_w_ = (conv_param->kernel_w_ - 1) / 2;
|
||||
break;
|
||||
case schema::PadMode_VALID:
|
||||
conv_param->pad_h_ = 0;
|
||||
conv_param->pad_w_ = 0;
|
||||
break;
|
||||
case schema::PadMode_CAFFE:
|
||||
conv_param->pad_h_ = conv_param->pad_u_;
|
||||
conv_param->pad_w_ = conv_param->pad_l_;
|
||||
break;
|
||||
default:
|
||||
MS_LOG(ERROR) << "invalid pad mode!";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return reinterpret_cast<OpParameter *>(conv_param);
|
||||
}
|
||||
|
||||
|
|
|
@ -70,6 +70,15 @@ int Convolution1x1FP16CPUKernel::InitConv1x1Param() {
|
|||
return RET_MEMORY_FAILED;
|
||||
}
|
||||
memset(pack_input_, 0, matmul_param_->row_16_ * matmul_param_->deep_ * sizeof(float16_t));
|
||||
|
||||
if (pre_trans_input_) {
|
||||
input_ptr_ = reinterpret_cast<float16_t *>(malloc(matmul_param_->row_ * matmul_param_->deep_ * sizeof(float16_t)));
|
||||
if (input_ptr_ == nullptr) {
|
||||
MS_LOG(ERROR) << "Conv1x1 Malloc input_ptr_ error!";
|
||||
return RET_MEMORY_FAILED;
|
||||
}
|
||||
memset(input_ptr_, 0, matmul_param_->row_ * matmul_param_->deep_ * sizeof(float16_t));
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
|
@ -131,6 +140,10 @@ void Convolution1x1FP16CPUKernel::FreeTmpBuffer() {
|
|||
free(pack_input_);
|
||||
pack_input_ = nullptr;
|
||||
}
|
||||
if (pre_trans_input_ && input_ptr_ != nullptr) {
|
||||
free(input_ptr_);
|
||||
input_ptr_ = nullptr;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -205,15 +218,6 @@ int Convolution1x1FP16CPUKernel::Run() {
|
|||
return ret;
|
||||
}
|
||||
|
||||
if (pre_trans_input_) {
|
||||
input_ptr_ = reinterpret_cast<float16_t *>(
|
||||
ctx_->allocator->Malloc(matmul_param_->row_ * matmul_param_->deep_ * sizeof(float16_t)));
|
||||
if (input_ptr_ == nullptr) {
|
||||
MS_LOG(ERROR) << "Conv1x1 Malloc input_ptr_ error!";
|
||||
return RET_MEMORY_FAILED;
|
||||
}
|
||||
}
|
||||
|
||||
for (int batch_index = 0; batch_index < conv_param_->input_batch_; batch_index++) {
|
||||
Pre1x1Trans(
|
||||
execute_input_ + batch_index * conv_param_->input_h_ * conv_param_->input_w_ * conv_param_->input_channel_,
|
||||
|
@ -229,10 +233,6 @@ int Convolution1x1FP16CPUKernel::Run() {
|
|||
ConvolutionBaseFP16CPUKernel::IfCastOutput();
|
||||
ConvolutionBaseFP16CPUKernel::FreeTmpBuffer();
|
||||
|
||||
if (pre_trans_input_ && input_ptr_ != nullptr) {
|
||||
ctx_->allocator->Free(input_ptr_);
|
||||
input_ptr_ = nullptr;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -29,15 +29,15 @@ MatmulCPUKernel::~MatmulCPUKernel() { FreeTmpBuffer(); }
|
|||
|
||||
void MatmulCPUKernel::FreeTmpBuffer() {
|
||||
if (a_c12_ptr_ != nullptr) {
|
||||
ctx_->allocator->Free(a_c12_ptr_);
|
||||
free(a_c12_ptr_);
|
||||
a_c12_ptr_ = nullptr;
|
||||
}
|
||||
if (b_r8_ptr_ != nullptr) {
|
||||
ctx_->allocator->Free(b_r8_ptr_);
|
||||
free(b_r8_ptr_);
|
||||
b_r8_ptr_ = nullptr;
|
||||
}
|
||||
if (bias_ptr_ != nullptr) {
|
||||
ctx_->allocator->Free(bias_ptr_);
|
||||
free(bias_ptr_);
|
||||
bias_ptr_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
@ -67,23 +67,28 @@ int MatmulCPUKernel::ReSize() {
|
|||
thread_count_ = MSMIN(thread_count_, UP_DIV(params_->col_8_, 8));
|
||||
thread_stride_ = UP_DIV(UP_DIV(params_->col_8_, 8), thread_count_);
|
||||
|
||||
a_c12_ptr_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(params_->row_12_ * params_->deep_ * sizeof(float)));
|
||||
a_c12_ptr_ = reinterpret_cast<float *>(malloc(params_->batch * params_->row_12_ * params_->deep_ * sizeof(float)));
|
||||
if (a_c12_ptr_ == nullptr) {
|
||||
FreeTmpBuffer();
|
||||
return RET_MEMORY_FAILED;
|
||||
}
|
||||
memset(a_c12_ptr_, 0, params_->row_12_ * params_->deep_ * sizeof(float));
|
||||
b_r8_ptr_ = reinterpret_cast<float *>(ctx_->allocator->Malloc(params_->col_8_ * params_->deep_ * sizeof(float)));
|
||||
|
||||
b_r8_ptr_ = reinterpret_cast<float *>(malloc(params_->batch * params_->col_8_ * params_->deep_ * sizeof(float)));
|
||||
if (b_r8_ptr_ == nullptr) {
|
||||
FreeTmpBuffer();
|
||||
return RET_MEMORY_FAILED;
|
||||
}
|
||||
memset(b_r8_ptr_, 0, params_->col_8_ * params_->deep_ * sizeof(float));
|
||||
|
||||
params_->a_const_ = false;
|
||||
params_->b_const_ = false;
|
||||
InitMatrixA(reinterpret_cast<float *>(in_tensors_[0]->Data()), a_c12_ptr_);
|
||||
InitMatrixB(reinterpret_cast<float *>(in_tensors_[1]->Data()), b_r8_ptr_);
|
||||
params_->a_const_ = (in_tensors_[0]->Data() != nullptr);
|
||||
params_->b_const_ = (in_tensors_[1]->Data() != nullptr);
|
||||
if (params_->a_const_ == true) {
|
||||
InitMatrixA(reinterpret_cast<float *>(in_tensors_[0]->Data()), a_c12_ptr_);
|
||||
}
|
||||
if (params_->b_const_ == true) {
|
||||
InitMatrixB(reinterpret_cast<float *>(in_tensors_[1]->Data()), b_r8_ptr_);
|
||||
}
|
||||
|
||||
bias_ptr_ = reinterpret_cast<float *>(malloc(params_->col_8_ * sizeof(float)));
|
||||
if (bias_ptr_ == nullptr) {
|
||||
|
@ -99,35 +104,27 @@ int MatmulCPUKernel::ReSize() {
|
|||
}
|
||||
|
||||
void MatmulCPUKernel::InitMatrixA(float *src_ptr, float *dst_ptr) {
|
||||
if (params_->a_const_ == true) {
|
||||
return;
|
||||
}
|
||||
if (src_ptr == nullptr) {
|
||||
return;
|
||||
}
|
||||
params_->a_const_ = true;
|
||||
|
||||
if (params_->a_transpose_) {
|
||||
RowMajor2Row12Major(src_ptr, dst_ptr, params_->deep_, params_->row_);
|
||||
} else {
|
||||
RowMajor2Col12Major(src_ptr, dst_ptr, params_->row_, params_->deep_);
|
||||
for (int i = 0; i < params_->batch; i++) {
|
||||
float *src = src_ptr + i * params_->deep_ * params_->row_;
|
||||
float *dst = dst_ptr + i * params_->deep_ * params_->row_12_;
|
||||
if (params_->a_transpose_) {
|
||||
RowMajor2Row12Major(src, dst, params_->deep_, params_->row_);
|
||||
} else {
|
||||
RowMajor2Col12Major(src, dst, params_->row_, params_->deep_);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
void MatmulCPUKernel::InitMatrixB(float *src_ptr, float *dst_ptr) {
|
||||
if (params_->b_const_ == true) {
|
||||
return;
|
||||
}
|
||||
if (src_ptr == nullptr) {
|
||||
return;
|
||||
}
|
||||
params_->b_const_ = true;
|
||||
|
||||
if (params_->b_transpose_) {
|
||||
RowMajor2Col8Major(src_ptr, dst_ptr, params_->col_, params_->deep_);
|
||||
} else {
|
||||
RowMajor2Row8Major(src_ptr, dst_ptr, params_->deep_, params_->col_);
|
||||
for (int i = 0; i < params_->batch; i++) {
|
||||
float *src = src_ptr + i * params_->deep_ * params_->col_;
|
||||
float *dst = dst_ptr + i * params_->deep_ * params_->col_8_;
|
||||
if (params_->b_transpose_) {
|
||||
RowMajor2Col8Major(src, dst, params_->col_, params_->deep_);
|
||||
} else {
|
||||
RowMajor2Row8Major(src, dst, params_->deep_, params_->col_);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
@ -144,8 +141,8 @@ int MatmulCPUKernel::RunImpl(int task_id) {
|
|||
if (cur_oc <= 0) {
|
||||
return RET_OK;
|
||||
}
|
||||
MatMulOpt(a_c12_ptr_, b_r8_ptr_ + task_id * thread_stride_ * C8NUM * params_->deep_,
|
||||
c_r_ptr_ + task_id * thread_stride_ * C8NUM, bias_ptr_ + task_id * thread_stride_ * C8NUM, ActType_No,
|
||||
MatMulOpt(a_ptr_, b_ptr_ + task_id * thread_stride_ * C8NUM * params_->deep_,
|
||||
c_ptr_ + task_id * thread_stride_ * C8NUM, bias_ptr_ + task_id * thread_stride_ * C8NUM, ActType_No,
|
||||
params_->deep_, params_->row_, cur_oc, params_->col_, OutType_Nhwc);
|
||||
return RET_OK;
|
||||
}
|
||||
|
@ -166,20 +163,21 @@ int MatmulCPUKernel::Run() {
|
|||
MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret;
|
||||
return prepare_ret;
|
||||
}
|
||||
auto a_ptr = reinterpret_cast<float *>(in_tensors_[0]->Data());
|
||||
auto b_ptr = reinterpret_cast<float *>(in_tensors_[1]->Data());
|
||||
auto c_ptr = reinterpret_cast<float *>(out_tensors_[0]->Data());
|
||||
auto a_stride = params_->row_ * params_->deep_;
|
||||
auto b_stride = params_->deep_ * params_->col_;
|
||||
auto c_stride = params_->row_ * params_->col_;
|
||||
auto a_src = reinterpret_cast<float *>(in_tensors_[0]->Data());
|
||||
auto b_src = reinterpret_cast<float *>(in_tensors_[1]->Data());
|
||||
auto c_src = reinterpret_cast<float *>(out_tensors_[0]->Data());
|
||||
|
||||
if (params_->a_const_ == false) {
|
||||
InitMatrixA(a_src, a_c12_ptr_);
|
||||
}
|
||||
if (params_->b_const_ == false) {
|
||||
InitMatrixB(b_src, b_r8_ptr_);
|
||||
}
|
||||
|
||||
for (int i = 0; i < params_->batch; ++i) {
|
||||
auto cur_a_ptr = a_ptr + i * a_stride;
|
||||
auto cur_b_ptr = b_ptr + i * b_stride;
|
||||
c_r_ptr_ = c_ptr + i * c_stride;
|
||||
|
||||
InitMatrixA(cur_a_ptr, a_c12_ptr_);
|
||||
InitMatrixB(cur_b_ptr, b_r8_ptr_);
|
||||
|
||||
a_ptr_ = a_c12_ptr_ + i * params_->row_12_ * params_->deep_;
|
||||
b_ptr_ = b_r8_ptr_ + i * params_->deep_ * params_->col_8_;
|
||||
c_ptr_ = c_src + i * params_->row_ * params_->col_;
|
||||
LiteBackendParallelLaunch(MatmulFloatRun, this, thread_count_);
|
||||
}
|
||||
return RET_OK;
|
||||
|
|
|
@ -43,8 +43,10 @@ class MatmulCPUKernel : public MatmulBaseCPUKernel {
|
|||
private:
|
||||
float *a_c12_ptr_ = nullptr;
|
||||
float *b_r8_ptr_ = nullptr;
|
||||
float *c_r_ptr_ = nullptr;
|
||||
float *bias_ptr_ = nullptr;
|
||||
float *a_ptr_ = nullptr;
|
||||
float *b_ptr_ = nullptr;
|
||||
float *c_ptr_ = nullptr;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
Loading…
Reference in New Issue