Add sample script of data processing for fine-tuning BERT on ClUE dataset

Add sample script of data processing for fine-tuning BERT on CLUE dataset

fix pylint

fix pylint missing-docstring

Add sample script of data processing for fine-tuning BERT on CLUE dataset

fix pylint

fix pylint missing-docstring

fix pylint
This commit is contained in:
dessyang 2020-07-10 14:35:25 -04:00 committed by xiefangqi
parent 8844462e15
commit 82426851f1
1 changed files with 153 additions and 0 deletions

View File

@ -0,0 +1,153 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
sample script of processing CLUE classification dataset using mindspore.dataset.text for fine-tuning bert
"""
import os
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.dataset as ds
import mindspore.dataset.text as text
import mindspore.dataset.transforms.c_transforms as ops
def process_tnews_clue_dataset(data_dir, label_list, bert_vocab_path,
data_usage='train', shuffle_dataset=False, max_seq_len=128, batch_size=64):
"""Process TNEWS dataset"""
### Loading TNEWS from CLUEDataset
assert data_usage in ['train', 'eval', 'test']
if data_usage == 'train':
dataset = ds.CLUEDataset(os.path.join(data_dir, "train.json"), task='TNEWS',
usage=data_usage, shuffle=shuffle_dataset)
elif data_usage == 'eval':
dataset = ds.CLUEDataset(os.path.join(data_dir, "dev.json"), task='TNEWS',
usage=data_usage, shuffle=shuffle_dataset)
else:
dataset = ds.CLUEDataset(os.path.join(data_dir, "test.json"), task='TNEWS',
usage=data_usage, shuffle=shuffle_dataset)
### Processing label
if data_usage == 'test':
dataset = dataset.map(input_columns=["id"], output_columns=["id", "label_id"],
columns_order=["id", "label_id", "sentence"], operations=ops.Duplicate())
dataset = dataset.map(input_columns=["label_id"], operations=ops.Fill(0))
else:
label_vocab = text.Vocab.from_list(label_list)
label_lookup = text.Lookup(label_vocab)
dataset = dataset.map(input_columns="label_desc", output_columns="label_id", operations=label_lookup)
### Processing sentence
vocab = text.Vocab.from_file(bert_vocab_path)
tokenizer = text.BertTokenizer(vocab, lower_case=True)
lookup = text.Lookup(vocab, unknown_token='[UNK]')
dataset = dataset.map(input_columns=["sentence"], operations=tokenizer)
dataset = dataset.map(input_columns=["sentence"], operations=ops.Slice(slice(0, max_seq_len)))
dataset = dataset.map(input_columns=["sentence"],
operations=ops.Concatenate(prepend=np.array(["[CLS]"], dtype='S'),
append=np.array(["[SEP]"], dtype='S')))
dataset = dataset.map(input_columns=["sentence"], output_columns=["text_ids"], operations=lookup)
dataset = dataset.map(input_columns=["text_ids"], operations=ops.PadEnd([max_seq_len], 0))
dataset = dataset.map(input_columns=["text_ids"], output_columns=["text_ids", "mask_ids"],
columns_order=["label_id", "text_ids", "mask_ids"], operations=ops.Duplicate())
dataset = dataset.map(input_columns=["mask_ids"], operations=ops.Mask(ops.Relational.NE, 0, mstype.int32))
dataset = dataset.map(input_columns=["text_ids"], output_columns=["text_ids", "segment_ids"],
columns_order=["label_id", "text_ids", "mask_ids", "segment_ids"], operations=ops.Duplicate())
dataset = dataset.map(input_columns=["segment_ids"], operations=ops.Fill(0))
dataset = dataset.batch(batch_size)
label = []
text_ids = []
mask_ids = []
segment_ids = []
for data in dataset:
label.append(data[0])
text_ids.append(data[1])
mask_ids.append(data[2])
segment_ids.append(data[3])
return label, text_ids, mask_ids, segment_ids
def process_cmnli_clue_dataset(data_dir, label_list, bert_vocab_path,
data_usage='train', shuffle_dataset=False, max_seq_len=128, batch_size=64):
"""Process CMNLI dataset"""
### Loading CMNLI from CLUEDataset
assert data_usage in ['train', 'eval', 'test']
if data_usage == 'train':
dataset = ds.CLUEDataset(os.path.join(data_dir, "train.json"), task='CMNLI',
usage=data_usage, shuffle=shuffle_dataset)
elif data_usage == 'eval':
dataset = ds.CLUEDataset(os.path.join(data_dir, "dev.json"), task='CMNLI',
usage=data_usage, shuffle=shuffle_dataset)
else:
dataset = ds.CLUEDataset(os.path.join(data_dir, "test.json"), task='CMNLI',
usage=data_usage, shuffle=shuffle_dataset)
### Processing label
if data_usage == 'test':
dataset = dataset.map(input_columns=["id"], output_columns=["id", "label_id"],
columns_order=["id", "label_id", "sentence1", "sentence2"], operations=ops.Duplicate())
dataset = dataset.map(input_columns=["label_id"], operations=ops.Fill(0))
else:
label_vocab = text.Vocab.from_list(label_list)
label_lookup = text.Lookup(label_vocab)
dataset = dataset.map(input_columns="label", output_columns="label_id", operations=label_lookup)
### Processing sentence pairs
vocab = text.Vocab.from_file(bert_vocab_path)
tokenizer = text.BertTokenizer(vocab, lower_case=True)
lookup = text.Lookup(vocab, unknown_token='[UNK]')
### Tokenizing sentences and truncate sequence pair
dataset = dataset.map(input_columns=["sentence1"], operations=tokenizer)
dataset = dataset.map(input_columns=["sentence2"], operations=tokenizer)
dataset = dataset.map(input_columns=["sentence1", "sentence2"],
operations=text.TruncateSequencePair(max_seq_len-3))
### Adding special tokens
dataset = dataset.map(input_columns=["sentence1"],
operations=ops.Concatenate(prepend=np.array(["[CLS]"], dtype='S'),
append=np.array(["[SEP]"], dtype='S')))
dataset = dataset.map(input_columns=["sentence2"],
operations=ops.Concatenate(append=np.array(["[SEP]"], dtype='S')))
### Generating segment_ids
dataset = dataset.map(input_columns=["sentence1"], output_columns=["sentence1", "type_sentence1"],
columns_order=["sentence1", "type_sentence1", "sentence2", "label_id"],
operations=ops.Duplicate())
dataset = dataset.map(input_columns=["sentence2"], output_columns=["sentence2", "type_sentence2"],
columns_order=["sentence1", "type_sentence1", "sentence2", "type_sentence2", "label_id"],
operations=ops.Duplicate())
dataset = dataset.map(input_columns=["type_sentence1"], operations=[lookup, ops.Fill(0)])
dataset = dataset.map(input_columns=["type_sentence2"], operations=[lookup, ops.Fill(1)])
dataset = dataset.map(input_columns=["type_sentence1", "type_sentence2"], output_columns=["segment_ids"],
columns_order=["sentence1", "sentence2", "segment_ids", "label_id"],
operations=ops.Concatenate())
dataset = dataset.map(input_columns=["segment_ids"], operations=ops.PadEnd([max_seq_len], 0))
### Generating text_ids
dataset = dataset.map(input_columns=["sentence1", "sentence2"], output_columns=["text_ids"],
columns_order=["text_ids", "segment_ids", "label_id"],
operations=ops.Concatenate())
dataset = dataset.map(input_columns=["text_ids"], operations=lookup)
dataset = dataset.map(input_columns=["text_ids"], operations=ops.PadEnd([max_seq_len], 0))
### Generating mask_ids
dataset = dataset.map(input_columns=["text_ids"], output_columns=["text_ids", "mask_ids"],
columns_order=["label_id", "text_ids", "mask_ids", "segment_ids"], operations=ops.Duplicate())
dataset = dataset.map(input_columns=["mask_ids"], operations=ops.Mask(ops.Relational.NE, 0, mstype.int32))
dataset = dataset.batch(batch_size)
label = []
text_ids = []
mask_ids = []
segment_ids = []
for data in dataset:
label.append(data[0])
text_ids.append(data[1])
mask_ids.append(data[2])
segment_ids.append(data[3])
return label, text_ids, mask_ids, segment_ids