add split allreduce testcase for bert_thor

This commit is contained in:
wangmin 2020-09-18 20:33:36 +08:00
parent 55e90cc774
commit 8012dbde54
1 changed files with 30 additions and 3 deletions

View File

@ -107,6 +107,32 @@ def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None,
logger.info("repeat count: {}".format(ds.get_repeat_count()))
return ds
def _set_bert_all_reduce_split():
"""set bert all_reduce fusion split, support num_hidden_layers is 12 and 24."""
from mindspore.parallel._auto_parallel_context import auto_parallel_context
if bert_net_cfg.num_hidden_layers == 12:
if bert_net_cfg.use_relative_positions:
auto_parallel_context().set_all_reduce_fusion_split_indices([29, 58, 87, 116, 145, 174, 203, 217],
"hccl_world_groupsum1")
auto_parallel_context().set_all_reduce_fusion_split_indices([29, 58, 87, 116, 145, 174, 203, 217],
"hccl_world_groupsum3")
else:
auto_parallel_context().set_all_reduce_fusion_split_indices([28, 55, 82, 109, 136, 163, 190, 205],
"hccl_world_groupsum1")
auto_parallel_context().set_all_reduce_fusion_split_indices([28, 55, 82, 109, 136, 163, 190, 205],
"hccl_world_groupsum3")
elif bert_net_cfg.num_hidden_layers == 24:
if bert_net_cfg.use_relative_positions:
auto_parallel_context().set_all_reduce_fusion_split_indices([30, 90, 150, 210, 270, 330, 390, 421],
"hccl_world_groupsum1")
auto_parallel_context().set_all_reduce_fusion_split_indices([30, 90, 150, 210, 270, 330, 390, 421],
"hccl_world_groupsum3")
else:
auto_parallel_context().set_all_reduce_fusion_split_indices([38, 77], "hccl_world_groupsum1")
auto_parallel_context().set_all_reduce_fusion_split_indices([38, 77], "hccl_world_groupsum3")
def train_process_bert_thor(q, device_id, epoch_size, device_num):
os.system("mkdir " + str(device_id))
os.chdir(str(device_id))
@ -120,10 +146,11 @@ def train_process_bert_thor(q, device_id, epoch_size, device_num):
D.init()
rank = device_id % device_num
context.reset_auto_parallel_context()
_set_bert_all_reduce_split()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
device_num=device_num)
bert_net_cfg.num_hidden_layers = 2
bert_net_cfg.num_hidden_layers = 4
ds = create_bert_dataset(device_num=device_num, rank=rank, do_shuffle=False, data_dir=DATASET_PATH, schema_dir=None)
net_with_loss = BertNetworkWithLoss(bert_net_cfg, True)
@ -200,8 +227,8 @@ def test_bert_thor_mlperf_8p():
os.system("rm -rf " + str(i))
print("End training...")
assert mean_cost < 51
assert mean_loss < 8.5
assert mean_cost < 64.2
assert mean_loss < 7.9
if __name__ == '__main__':
test_bert_thor_mlperf_8p()