forked from mindspore-Ecosystem/mindspore
!8484 Add Digamma op
From: @peixu_ren Reviewed-by: @zh_qh,@liangchenghui,@zh_qh Signed-off-by: @liangchenghui
This commit is contained in:
commit
7fd2db437b
|
@ -25,7 +25,7 @@ from ...common import dtype as mstype
|
|||
from ..._checkparam import Validator as validator
|
||||
|
||||
|
||||
__all__ = ['ReduceLogSumExp', 'Range', 'LinSpace', 'LGamma', 'IGamma', 'MatMul', 'Moments']
|
||||
__all__ = ['ReduceLogSumExp', 'Range', 'LinSpace', 'LGamma', 'DiGamma', 'IGamma', 'MatMul', 'Moments']
|
||||
|
||||
|
||||
@constexpr
|
||||
|
@ -312,6 +312,102 @@ class LGamma(Cell):
|
|||
return self.select(self.isfinite(input_x), result, infinity)
|
||||
|
||||
|
||||
class DiGamma(Cell):
|
||||
r"""
|
||||
Calculate Digamma using Lanczos' approximation refering to "A Precision Approximationof the Gamma Function".
|
||||
The algorithm is:
|
||||
|
||||
.. math::
|
||||
digamma(z + 1) = log(t(z)) + A'(z) / A(z) - kLanczosGamma / t(z)
|
||||
|
||||
t(z) = z + kLanczosGamma + 1/2
|
||||
|
||||
A(z) = kBaseLanczosCoeff + \sum_{k=1}^n \frac{kLanczosCoefficients[i]}{z + k}
|
||||
|
||||
A'(z) = \sum_{k=1}^n \frac{kLanczosCoefficients[i]}{{z + k}^2}
|
||||
|
||||
However, if the input is less than 0.5 use Euler's reflection formula:
|
||||
|
||||
.. math::
|
||||
|
||||
digamma(x) = digamma(1 - x) - pi * cot(pi * x)
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor[Number]) - The input tensor. Only float16, float32 are supported.
|
||||
|
||||
Outputs:
|
||||
Tensor, has the same shape and dtype as the `input_x`.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([2, 3, 4]).astype(np.float32))
|
||||
>>> op = nn.DiGamma()
|
||||
>>> output = op(input_x)
|
||||
[0.42278463 0.92278427 1.2561178]
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super(DiGamma, self).__init__()
|
||||
# const numbers
|
||||
self.k_lanczos_gamma = 7
|
||||
self.k_base_lanczos_coeff = 0.99999999999980993227684700473478
|
||||
self.k_lanczos_coefficients = [676.520368121885098567009190444019,
|
||||
-1259.13921672240287047156078755283,
|
||||
771.3234287776530788486528258894,
|
||||
-176.61502916214059906584551354,
|
||||
12.507343278686904814458936853,
|
||||
-0.13857109526572011689554707,
|
||||
9.984369578019570859563e-6,
|
||||
1.50563273514931155834e-7]
|
||||
self.nan = np.nan
|
||||
self.pi = np.pi
|
||||
self.lanczos_gamma_plus_one_half = self.k_lanczos_gamma + 0.5
|
||||
self.log_lanczos_gamma_plus_one_half = np.log(self.lanczos_gamma_plus_one_half)
|
||||
|
||||
# operations
|
||||
self.log1p = P.Log1p()
|
||||
self.abs = P.Abs()
|
||||
self.shape = P.Shape()
|
||||
self.dtype = P.DType()
|
||||
self.fill = P.Fill()
|
||||
self.floor = P.Floor()
|
||||
self.equal = P.Equal()
|
||||
self.less = P.Less()
|
||||
self.select = P.Select()
|
||||
self.sin = P.Sin()
|
||||
self.cos = P.Cos()
|
||||
self.logicaland = P.LogicalAnd()
|
||||
|
||||
def construct(self, input_x):
|
||||
input_dtype = self.dtype(input_x)
|
||||
_check_input_dtype("input x", input_dtype, [mstype.float16, mstype.float32], self.cls_name)
|
||||
need_to_reflect = self.less(input_x, 0.5)
|
||||
neg_input = -input_x
|
||||
z = self.select(need_to_reflect, neg_input, input_x - 1)
|
||||
|
||||
@constexpr
|
||||
def _calculate_num_denom(z, k_base_lanczos_coeff, k_lanczos_coefficients):
|
||||
num = 0
|
||||
denom = k_base_lanczos_coeff
|
||||
for i in range(8):
|
||||
num = num - k_lanczos_coefficients[i] / ((z + i + 1) * (z + i + 1))
|
||||
denom = denom + k_lanczos_coefficients[i] / (z + i + 1)
|
||||
return num, denom
|
||||
num, denom = _calculate_num_denom(z, self.k_base_lanczos_coeff, self.k_lanczos_coefficients)
|
||||
|
||||
t = z + self.lanczos_gamma_plus_one_half
|
||||
log_t = self.log1p(z / self.lanczos_gamma_plus_one_half) + self.log_lanczos_gamma_plus_one_half
|
||||
|
||||
y = log_t + num / denom - self.k_lanczos_gamma / t
|
||||
|
||||
reduced_input = input_x + self.abs(self.floor(input_x + 0.5))
|
||||
reflection = y - self.pi * self.cos(self.pi * reduced_input) / self.sin(self.pi * reduced_input)
|
||||
real_result = self.select(need_to_reflect, reflection, y)
|
||||
nan = self.fill(self.dtype(input_x), self.shape(input_x), np.nan)
|
||||
|
||||
return self.select(self.logicaland(self.less(input_x, 0), self.equal(input_x, self.floor(input_x))),
|
||||
nan, real_result)
|
||||
|
||||
|
||||
eps_fp16 = Tensor(np.finfo(np.float16).eps, mstype.float16)
|
||||
eps_fp32 = Tensor(np.finfo(np.float32).eps, mstype.float32)
|
||||
|
||||
|
|
|
@ -598,6 +598,10 @@ test_cases = [
|
|||
'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32)),
|
||||
Tensor(np.array([3, 4, 5, 6]).astype(np.float32))],
|
||||
'skip': ['backward']}),
|
||||
('DiGamma', {
|
||||
'block': nn.DiGamma(),
|
||||
'desc_inputs': [Tensor(np.array([3, 4, 5, 6]).astype(np.float32))],
|
||||
'skip': ['backward']}),
|
||||
('FlattenNet', {
|
||||
'block': FlattenNet(),
|
||||
'desc_inputs': [Tensor(np.ones([1, 2, 3, 4], np.float32))],
|
||||
|
|
Loading…
Reference in New Issue