forked from mindspore-Ecosystem/mindspore
!546 GPU add testcase for maximum logical
Merge pull request !546 from VectorSL/add_test_new
This commit is contained in:
commit
7fbaf2f629
|
@ -30,3 +30,8 @@ from .hsigmoid import HSigmoid, gpu_schedule_HSigmoid
|
|||
from .hsigmoid_grad import HSigmoidGrad, gpu_schedule_HSigmoidGrad
|
||||
from .hswish import HSwish, gpu_schedule_HSwish
|
||||
from .hswish_grad import HSwishGrad, gpu_schedule_HSwishGrad
|
||||
from .logical_or import LogicalOr, gpu_schedule_LogicalOr
|
||||
from .logical_not import LogicalNot, gpu_schedule_LogicalNot
|
||||
from .logical_and import LogicalAnd, gpu_schedule_LogicalAnd
|
||||
from .sub import Sub, gpu_schedule_Sub
|
||||
from .less_equal import LessEqual, gpu_schedule_LessEqual
|
||||
|
|
|
@ -209,6 +209,7 @@ class TrainOneStepWithLossScaleCell(Cell):
|
|||
self.gpu_target = True
|
||||
self.float_status = P.FloatStatus()
|
||||
self.addn = P.AddN()
|
||||
self.reshape = P.Reshape()
|
||||
else:
|
||||
self.gpu_target = False
|
||||
self.alloc_status = NPUAllocFloatStatus()
|
||||
|
@ -260,6 +261,8 @@ class TrainOneStepWithLossScaleCell(Cell):
|
|||
else:
|
||||
flag_sum = self.hyper_map(F.partial(_grad_overflow), grads)
|
||||
flag_sum = self.addn(flag_sum)
|
||||
# convert flag_sum to scalar
|
||||
flag_sum = self.reshape(flag_sum, (()))
|
||||
if self.is_distributed:
|
||||
# sum overflow flag over devices
|
||||
flag_reduce = self.allreduce(flag_sum)
|
||||
|
|
|
@ -27,3 +27,8 @@ from .hsigmoid import _hsigmoid_akg
|
|||
from .hsigmoid_grad import _hsigmoid_grad_akg
|
||||
from .hswish import _hswish_akg
|
||||
from .hswish_grad import _hswish_grad_akg
|
||||
from .sub import _sub_akg
|
||||
from .logical_and import _logical_and_akg
|
||||
from .logical_not import _logical_not_akg
|
||||
from .logical_or import _logical_or_akg
|
||||
from .lessequal import _lessequal_akg
|
||||
|
|
|
@ -1495,6 +1495,7 @@ class LogicalNot(PrimitiveWithInfer):
|
|||
@prim_attr_register
|
||||
def __init__(self):
|
||||
"""init LogicalNot"""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
return x_shape
|
||||
|
|
|
@ -0,0 +1,49 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.context as context
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.lessequal = P.LessEqual()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.lessequal(x, y)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_lessequal():
|
||||
x = Tensor(np.array([[1, 2, 3]]).astype(np.float32))
|
||||
y = Tensor(np.array([[2]]).astype(np.float32))
|
||||
expect = [[True, True, False]]
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
lessequal = Net()
|
||||
output = lessequal(x, y)
|
||||
assert np.all(output.asnumpy() == expect)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
lessequal = Net()
|
||||
output = lessequal(x, y)
|
||||
assert np.all(output.asnumpy() == expect)
|
||||
|
|
@ -0,0 +1,92 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.context as context
|
||||
import numpy as np
|
||||
|
||||
|
||||
class NetAnd(Cell):
|
||||
def __init__(self):
|
||||
super(NetAnd, self).__init__()
|
||||
self.logicaland = P.LogicalAnd()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.logicaland(x, y)
|
||||
|
||||
class NetOr(Cell):
|
||||
def __init__(self):
|
||||
super(NetOr, self).__init__()
|
||||
self.logicalor = P.LogicalOr()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.logicalor(x, y)
|
||||
|
||||
class NetNot(Cell):
|
||||
def __init__(self):
|
||||
super(NetNot, self).__init__()
|
||||
self.logicalnot = P.LogicalNot()
|
||||
|
||||
def construct(self, x):
|
||||
return self.logicalnot(x)
|
||||
|
||||
x = np.array([True, False, False]).astype(np.bool)
|
||||
y = np.array([False]).astype(np.bool)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_logicaland():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
logicaland = NetAnd()
|
||||
output = logicaland(Tensor(x), Tensor(y))
|
||||
assert np.all(output.asnumpy() == np.logical_and(x, y))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
logicaland = NetAnd()
|
||||
output = logicaland(Tensor(x), Tensor(y))
|
||||
assert np.all(output.asnumpy() == np.logical_and(x, y))
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_logicalor():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
logicalor = NetOr()
|
||||
output = logicalor(Tensor(x), Tensor(y))
|
||||
assert np.all(output.asnumpy() == np.logical_or(x, y))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
logicalor = NetOr()
|
||||
output = logicalor(Tensor(x), Tensor(y))
|
||||
assert np.all(output.asnumpy() == np.logical_or(x, y))
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_logicalnot():
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
logicalnot = NetNot()
|
||||
output = logicalnot(Tensor(x))
|
||||
assert np.all(output.asnumpy() == np.logical_not(x))
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
logicalnot = NetNot()
|
||||
output = logicalnot(Tensor(x))
|
||||
assert np.all(output.asnumpy() == np.logical_not(x))
|
||||
|
|
@ -0,0 +1,55 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.common.tensor import Tensor
|
||||
import mindspore.context as context
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.max = P.Maximum()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.max(x, y)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_max():
|
||||
x = Tensor(np.array([[1, 2, 3]]).astype(np.float32))
|
||||
y = Tensor(np.array([[2]]).astype(np.float32))
|
||||
expect = [[2, 2, 3]]
|
||||
error = np.ones(shape=[1, 3]) * 1.0e-5
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
max = Net()
|
||||
output = max(x, y)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
assert np.all(-diff < error)
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
max = Net()
|
||||
output = max(x, y)
|
||||
diff = output.asnumpy() - expect
|
||||
assert np.all(diff < error)
|
||||
assert np.all(-diff < error)
|
||||
|
Loading…
Reference in New Issue