diff --git a/mindspore/ccsrc/kernel/gpu/arrays/slice_gpu_kernel.h b/mindspore/ccsrc/kernel/gpu/arrays/slice_gpu_kernel.h index 96e899da60b..091a150fcb1 100644 --- a/mindspore/ccsrc/kernel/gpu/arrays/slice_gpu_kernel.h +++ b/mindspore/ccsrc/kernel/gpu/arrays/slice_gpu_kernel.h @@ -129,10 +129,10 @@ class SliceGpuFwdKernel : public GpuKernel { } begin_ = GetAttr>(kernel_node, "begin"); for (size_t i = 0; i < input_shape.size(); i++) { - if ((begin_[i] > 0 && (begin_[i] >= SizeToInt(input_shape[i]))) || + if ((begin_[i] > 0 && (begin_[i] > SizeToInt(input_shape[i]))) || (begin_[i] < 0 && (std::abs(begin_[i]) > SizeToInt(input_shape[i])))) { - MS_LOG(ERROR) << "Error input, out of bounds " << input_shape[i] << " in axis " << i << "."; - return false; + MS_LOG(INFO) << "Input out of bounds " << input_shape[i] << " in axis " << i << "."; + begin_[i] = 0; } } return true; diff --git a/tests/st/networks/test_gpu_resnet.py b/tests/st/networks/test_gpu_resnet.py index a5f450d5e37..a045f975013 100644 --- a/tests/st/networks/test_gpu_resnet.py +++ b/tests/st/networks/test_gpu_resnet.py @@ -32,9 +32,7 @@ from mindspore.nn.optim import Momentum from mindspore.ops import operations as P from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn import Dense -from mindspore.common.initializer import initializer - -context.set_context(mode=context.GRAPH_MODE, device_target="GPU") +from mindspore import amp def random_normal_init(shape, mean=0.0, stddev=0.01, seed=None): @@ -326,6 +324,7 @@ def resnet50(num_classes): @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_trainTensor(num_classes=10, epoch=8, batch_size=1): + context.set_context(mode=context.GRAPH_MODE, device_target="GPU") net = resnet50(num_classes) lr = 0.1 momentum = 0.9 @@ -341,3 +340,26 @@ def test_trainTensor(num_classes=10, epoch=8, batch_size=1): loss = train_network(data, label) losses.append(loss) assert(losses[-1].asnumpy() < 1) + +@pytest.mark.level0 +@pytest.mark.platform_x86_gpu_training +@pytest.mark.env_onecard +def test_trainTensor_amp(num_classes=10, epoch=18, batch_size=16): + context.set_context(mode=context.GRAPH_MODE, device_target="GPU", enable_mem_reuse=False, + enable_dynamic_memory=False) + net = resnet50(num_classes) + lr = 0.1 + momentum = 0.9 + optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, momentum) + criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) + train_network = amp.build_train_network(net, optimizer, criterion, level="O2") + train_network.set_train() + losses = [] + for i in range(0, epoch): + data = Tensor(np.ones([batch_size, 3, 224, 224]).astype(np.float32) * 0.01) + label = Tensor(np.ones([batch_size]).astype(np.int32)) + loss = train_network(data, label) + losses.append(loss) + assert(losses[-1][0].asnumpy() < 1) + assert(losses[-1][1].asnumpy() == False) + assert(losses[-1][2].asnumpy() > 1)