forked from mindspore-Ecosystem/mindspore
master_icsl
This commit is contained in:
parent
d4ebd7bf4a
commit
7da0ca48a4
|
@ -67,7 +67,7 @@ __kernel void Conv2D_H1W1C1(__read_only image2d_t input, __write_only image2d_t
|
|||
}
|
||||
}
|
||||
|
||||
if (bias) {
|
||||
if (bias != 0) {
|
||||
out_h0_w0_c0 += bias[co_slice0];
|
||||
}
|
||||
|
||||
|
@ -135,7 +135,7 @@ __kernel void Conv2D_H2W1C1(__read_only image2d_t input, __write_only image2d_t
|
|||
}
|
||||
}
|
||||
|
||||
if (bias) {
|
||||
if (bias != 0) {
|
||||
out_h0_w0_c0 += bias[co_slice0];
|
||||
out_h1_w0_c0 += bias[co_slice0];
|
||||
}
|
||||
|
@ -224,7 +224,7 @@ __kernel void Conv2D_H2W1C2(__read_only image2d_t input, __write_only image2d_t
|
|||
}
|
||||
}
|
||||
|
||||
if (bias) {
|
||||
if (bias != 0) {
|
||||
out_h0_w0_c0 += bias[co_slice0];
|
||||
out_h1_w0_c0 += bias[co_slice0];
|
||||
out_h0_w0_c1 += bias[co_slice1];
|
||||
|
@ -357,7 +357,7 @@ __kernel void Conv2D_H2W2C2(__read_only image2d_t input, __write_only image2d_t
|
|||
}
|
||||
}
|
||||
|
||||
if (bias) {
|
||||
if (bias != 0) {
|
||||
out_h0_w0_c0 += bias[co_slice0];
|
||||
out_h0_w1_c0 += bias[co_slice0];
|
||||
out_h1_w0_c0 += bias[co_slice0];
|
||||
|
|
|
@ -10,6 +10,7 @@ __kernel void SpaceToDepth(__read_only image2d_t src_data, __write_only image2d_
|
|||
int Y = get_global_id(1); // W
|
||||
int Z = get_global_id(2); // H * N
|
||||
if (X >= out_shape.w || Y >= out_shape.z || Z >= out_shape.x * out_shape.y) return;
|
||||
if (out_shape.y == 0 || ci_size == 0 || block_size == 0) return;
|
||||
int N = Z / out_shape.y;
|
||||
int H = Z % out_shape.y;
|
||||
int co_base = X * C4NUM;
|
||||
|
@ -43,6 +44,7 @@ __kernel void SpaceToDepthAlign(__read_only image2d_t src_data, __write_only ima
|
|||
int Y = get_global_id(1); // W
|
||||
int Z = get_global_id(2); // H * N
|
||||
if (X >= out_shape.w || Y >= out_shape.z || Z >= out_shape.x * out_shape.y) return;
|
||||
if (out_shape.y == 0 || in_shape.w == 0 || block_size == 0) return;
|
||||
|
||||
int N = Z / out_shape.y;
|
||||
int H = Z % out_shape.y;
|
||||
|
|
|
@ -171,7 +171,7 @@ __kernel void Winograd36To4x4(__read_only image2d_t input, __write_only image2d_
|
|||
acc += AtM_row[y] * At[idx];
|
||||
}
|
||||
|
||||
if (bias) {
|
||||
if (bias != 0) {
|
||||
acc += bias[slice];
|
||||
}
|
||||
|
||||
|
|
|
@ -42,6 +42,8 @@ using mindspore::schema::PrimitiveType_Square;
|
|||
namespace mindspore::kernel {
|
||||
|
||||
void ArithmeticSelfOpenCLKernel::GetKernelName(std::string *kernel_name, ArithmeticSelfParameter *param) {
|
||||
MS_ASSERT(kernel_name);
|
||||
MS_ASSERT(param);
|
||||
switch (param->op_parameter_.type_) {
|
||||
case PrimitiveType_Abs:
|
||||
kernel_name[0] += "_ElementAbs";
|
||||
|
|
|
@ -51,6 +51,8 @@ int SpaceToBatchNDOpenCLKernel::CheckSpecs() {
|
|||
MS_LOG(ERROR) << "block_sizes_ must > 1, actual " << param->block_sizes_[0] << ", " << param->block_sizes_[1];
|
||||
return RET_ERROR;
|
||||
}
|
||||
MS_ASSERT(param->block_sizes_[0]);
|
||||
MS_ASSERT(param->block_sizes_[1]);
|
||||
if (param->padded_in_shape_[kNHWC_H] % param->block_sizes_[0] ||
|
||||
param->padded_in_shape_[kNHWC_W] % param->block_sizes_[1]) {
|
||||
MS_LOG(ERROR) << "padded shape must be multiple of block!";
|
||||
|
|
|
@ -169,6 +169,7 @@ void StridedSliceOpenCLKernel::SetGlobalLocal() {
|
|||
const int max_divider = 8;
|
||||
auto max_work_group_size = ocl_runtime_->DeviceMaxWorkGroupSize();
|
||||
size_t local_c = GetMaxDivisorStrategy0(global[2], max_divider);
|
||||
local_c = std::max<size_t>(local_c, 1);
|
||||
size_t local_hw = max_work_group_size / local_c;
|
||||
size_t local_h = std::min(UP_DIV(global[0], 2), local_hw);
|
||||
size_t local_w = std::min(local_hw / local_h, global[1]);
|
||||
|
|
|
@ -36,6 +36,8 @@ struct OpenCLToFormatParameter {
|
|||
|
||||
template <typename SrcT, typename DstT>
|
||||
void Broadcast2GpuShape(DstT *dst, const SrcT *src, int src_num) {
|
||||
MS_ASSERT(dst);
|
||||
MS_ASSERT(src);
|
||||
auto *N = dst;
|
||||
auto *H = dst + 1;
|
||||
auto *W = dst + 2;
|
||||
|
@ -54,13 +56,15 @@ void Broadcast2GpuShape(DstT *dst, const SrcT *src, int src_num) {
|
|||
*H = src[1];
|
||||
*W = src[2];
|
||||
*C = src[3];
|
||||
} else if (src_num >= 5) {
|
||||
} else if (src_num > 4) {
|
||||
MS_LOG(ERROR) << "GPU doesn't support ndim>=" << src_num;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
void Broadcast2GpuShape(DstT *dst, const SrcT *src, int src_num, DstT default_value) {
|
||||
MS_ASSERT(dst);
|
||||
MS_ASSERT(src);
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
dst[i] = default_value;
|
||||
}
|
||||
|
@ -101,6 +105,7 @@ struct GpuTensorInfo {
|
|||
size_t RowPitch() const {
|
||||
auto runtime_wrapper = lite::opencl::OpenCLRuntimeWrapper();
|
||||
int alignment = runtime_wrapper.GetInstance()->GetImagePitchAlignment();
|
||||
MS_ASSERT(alignment);
|
||||
size_t row_pitch = UP_ROUND(width, alignment) * FLT4_size;
|
||||
return row_pitch;
|
||||
}
|
||||
|
@ -143,31 +148,31 @@ class OpenCLKernel : public LiteKernel {
|
|||
int AlignGlobalLocal(const std::vector<size_t> &global, const std::vector<size_t> &local) {
|
||||
std::vector<size_t> internal_global_ws = global;
|
||||
for (size_t i = 0; i < local.size(); ++i) {
|
||||
internal_global_ws[i] = UP_ROUND(global[i], local[i]);
|
||||
internal_global_ws.at(i) = UP_ROUND(global.at(i), local.at(i));
|
||||
}
|
||||
|
||||
MS_LOG(DEBUG) << "global size: " << global.size() << ", local size: " << local.size();
|
||||
for (size_t i = 0; i < global.size(); i++) {
|
||||
MS_LOG(DEBUG) << "global[" << i << "] = " << global[i];
|
||||
MS_LOG(DEBUG) << "global[" << i << "] = " << global.at(i);
|
||||
}
|
||||
for (size_t i = 0; i < local.size(); i++) {
|
||||
MS_LOG(DEBUG) << "local[" << i << "] = " << local[i];
|
||||
MS_LOG(DEBUG) << "local[" << i << "] = " << local.at(i);
|
||||
}
|
||||
|
||||
if (global.size() == 1) {
|
||||
global_range_ = cl::NDRange(internal_global_ws[0]);
|
||||
global_range_ = cl::NDRange(internal_global_ws.at(0));
|
||||
if (!local.empty()) {
|
||||
local_range_ = cl::NDRange(local[0]);
|
||||
local_range_ = cl::NDRange(local.at(0));
|
||||
}
|
||||
} else if (global.size() == 2) {
|
||||
global_range_ = cl::NDRange(internal_global_ws[0], internal_global_ws[1]);
|
||||
global_range_ = cl::NDRange(internal_global_ws.at(0), internal_global_ws.at(1));
|
||||
if (!local.empty()) {
|
||||
local_range_ = cl::NDRange(local[0], local[1]);
|
||||
local_range_ = cl::NDRange(local.at(0), local.at(1));
|
||||
}
|
||||
} else if (global.size() == 3) {
|
||||
global_range_ = cl::NDRange(internal_global_ws[0], internal_global_ws[1], internal_global_ws[2]);
|
||||
global_range_ = cl::NDRange(internal_global_ws.at(0), internal_global_ws.at(1), internal_global_ws.at(2));
|
||||
if (!local.empty()) {
|
||||
local_range_ = cl::NDRange(local[0], local[1], local[2]);
|
||||
local_range_ = cl::NDRange(local.at(0), local.at(1), local.at(2));
|
||||
}
|
||||
} else {
|
||||
MS_LOG(ERROR) << "Not supported NDRange!";
|
||||
|
@ -191,6 +196,7 @@ class OpenCLKernel : public LiteKernel {
|
|||
return RET_ERROR;
|
||||
}
|
||||
int GetImageSize(size_t idx, std::vector<size_t> *img_size) {
|
||||
MS_ASSERT(img_size);
|
||||
if (idx >= out_tensors_.size()) {
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
|
|
@ -28,11 +28,12 @@ using mindspore::lite::opencl::MemType;
|
|||
|
||||
SubGraphOpenCLKernel::~SubGraphOpenCLKernel() { UnInit(); }
|
||||
|
||||
int SubGraphOpenCLKernel::ReplaceOutTensorAndKernelToNull(
|
||||
void SubGraphOpenCLKernel::ReplaceOutTensorAndKernelToNull(
|
||||
const std::vector<lite::Tensor *> &in_tensors, const std::vector<std::vector<kernel::LiteKernel *>> &in_kernels,
|
||||
MemType mem_type) {
|
||||
for (size_t i = 0; i < in_tensors.size(); ++i) {
|
||||
for (auto &jv : in_kernels.at(i)) {
|
||||
MS_ASSERT(jv);
|
||||
auto tensors = (mem_type == MemType::IMG) ? jv->in_tensors() : jv->out_tensors();
|
||||
auto ft = std::find_if(tensors.begin(), tensors.end(),
|
||||
[&in_tensors, &i](lite::Tensor *kv) { return kv == in_tensors.at(i); });
|
||||
|
@ -43,6 +44,7 @@ int SubGraphOpenCLKernel::ReplaceOutTensorAndKernelToNull(
|
|||
std::replace_if(
|
||||
kernels.begin(), kernels.end(),
|
||||
[this, &in_tensors, &i](kernel::LiteKernel *kv) {
|
||||
MS_ASSERT(kv);
|
||||
return std::find_if(kv->in_tensors().begin(), kv->in_tensors().end(),
|
||||
[&in_tensors, &i](lite::Tensor *xv) { return xv == in_tensors.at(i); }) !=
|
||||
kv->in_tensors().end() &&
|
||||
|
@ -58,14 +60,16 @@ int SubGraphOpenCLKernel::ReplaceOutTensorAndKernelToNull(
|
|||
}
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
int SubGraphOpenCLKernel::ReplaceOutTensorAndKernelToConvert(const lite::Tensor *in_tensor,
|
||||
const std::vector<kernel::LiteKernel *> &in_kernels,
|
||||
lite::Tensor *new_tensor,
|
||||
kernel::LiteKernel *in_convert_op, MemType mem_type) {
|
||||
|
||||
void SubGraphOpenCLKernel::ReplaceOutTensorAndKernelToConvert(const lite::Tensor *in_tensor,
|
||||
const std::vector<kernel::LiteKernel *> &in_kernels,
|
||||
lite::Tensor *new_tensor,
|
||||
kernel::LiteKernel *in_convert_op, MemType mem_type) {
|
||||
MS_ASSERT(in_convert_op);
|
||||
auto in_opencl_op = reinterpret_cast<OpenCLKernel *>(in_convert_op);
|
||||
for (auto &iv : in_kernels) {
|
||||
MS_ASSERT(iv);
|
||||
auto kernels = (mem_type == MemType::IMG) ? iv->in_kernels() : iv->out_kernels();
|
||||
auto fk = std::find_if(kernels.begin(), kernels.end(), [&](kernel::LiteKernel *kv) { return kv == nullptr; });
|
||||
if (fk != kernels.end()) {
|
||||
|
@ -90,13 +94,16 @@ int SubGraphOpenCLKernel::ReplaceOutTensorAndKernelToConvert(const lite::Tensor
|
|||
in_convert_op->AddInKernel(iv);
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SubGraphOpenCLKernel::GenToFormatOp(const std::vector<lite::Tensor *> &in_tensors,
|
||||
const std::vector<std::vector<kernel::LiteKernel *>> &in_kernels,
|
||||
std::vector<lite::Tensor *> *out_tensors,
|
||||
std::vector<OpenCLToFormatParameter *> *out_parameters,
|
||||
std::vector<LiteKernel *> *out_convert_ops, MemType mem_type) {
|
||||
MS_ASSERT(out_tensors);
|
||||
MS_ASSERT(out_parameters);
|
||||
MS_ASSERT(out_convert_ops);
|
||||
out_tensors->clear();
|
||||
out_parameters->clear();
|
||||
out_convert_ops->clear();
|
||||
|
@ -167,6 +174,7 @@ int SubGraphOpenCLKernel::GenToFormatOp(const std::vector<lite::Tensor *> &in_te
|
|||
// replace in_tensor of inner kernel which use out tensor
|
||||
if (mem_type == MemType::BUF) {
|
||||
for (auto &iv : loop_kernels[i]) {
|
||||
MS_ASSERT(iv);
|
||||
auto tensors = iv->in_tensors();
|
||||
auto jv = std::find(tensors.begin(), tensors.end(), in_tensors.at(i));
|
||||
if (jv != tensors.end()) {
|
||||
|
@ -185,9 +193,11 @@ int SubGraphOpenCLKernel::Init() {
|
|||
allocator_ = ocl_runtime_->GetAllocator();
|
||||
MS_LOG(DEBUG) << "input num=" << in_tensors_.size() << ", output num=" << out_tensors_.size();
|
||||
for (const auto tensor : in_tensors_) {
|
||||
MS_ASSERT(tensor);
|
||||
tensor->set_allocator(allocator_);
|
||||
}
|
||||
for (const auto tensor : out_tensors_) {
|
||||
MS_ASSERT(tensor);
|
||||
tensor->set_allocator(allocator_);
|
||||
}
|
||||
|
||||
|
@ -223,72 +233,83 @@ int SubGraphOpenCLKernel::Init() {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
int SubGraphOpenCLKernel::UpdateTensorDataType() {
|
||||
void SubGraphOpenCLKernel::UpdateTensorDataType() {
|
||||
bool is_fp16 = ocl_runtime_->GetFp16Enable();
|
||||
MS_ASSERT(in_tensors_[0]);
|
||||
if (is_fp16 && (in_tensors_[0]->data_type() == kNumberTypeFloat32)) {
|
||||
std::set<lite::Tensor *> out_set;
|
||||
out_set.insert(in_tensors_.begin(), in_tensors_.end());
|
||||
out_set.insert(out_tensors_.begin(), out_tensors_.end());
|
||||
for (auto iv : nodes_) {
|
||||
MS_ASSERT(iv);
|
||||
auto cur_outs = iv->out_tensors();
|
||||
for (auto jv : cur_outs) {
|
||||
if (out_set.count(jv) == 0) {
|
||||
MS_ASSERT(jv);
|
||||
jv->set_data_type(kNumberTypeFloat16);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SubGraphOpenCLKernel::MallocTensorWithReuse() {
|
||||
int ret;
|
||||
kernel::LiteKernelUtil::InitTensorRefCount(nodes_);
|
||||
for (auto *kernel : nodes_) {
|
||||
MS_ASSERT(nullptr != kernel);
|
||||
MS_ASSERT(kernel);
|
||||
auto *op_kernel = reinterpret_cast<kernel::OpenCLKernel *>(kernel);
|
||||
auto outputs = kernel->out_tensors();
|
||||
for (auto i = 0; i < outputs.size(); ++i) {
|
||||
auto *output = outputs.at(i);
|
||||
MS_ASSERT(nullptr != output);
|
||||
MS_ASSERT(output);
|
||||
if (op_kernel->GetMemType() == MemType::IMG) {
|
||||
std::vector<size_t> img_size;
|
||||
op_kernel->GetImageSize(i, &img_size);
|
||||
ret = op_kernel->GetImageSize(i, &img_size);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(WARNING) << "GetImageSize failed";
|
||||
}
|
||||
auto data_ptr = allocator_->Malloc(output->Size(), img_size);
|
||||
output->set_data(data_ptr);
|
||||
} else {
|
||||
output->MallocData(allocator_);
|
||||
ret = output->MallocData(allocator_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(WARNING) << "MallocData failed";
|
||||
}
|
||||
}
|
||||
output->set_allocator(allocator_);
|
||||
}
|
||||
for (auto input_kernel : kernel->in_kernels()) {
|
||||
MS_ASSERT(nullptr != input_kernel);
|
||||
auto ret = input_kernel->DecOutTensorRefCount();
|
||||
if (0 != ret) {
|
||||
MS_ASSERT(input_kernel);
|
||||
ret = input_kernel->DecOutTensorRefCount();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(WARNING) << "DecOutTensorRefCount for kernel" << kernel->name() << " failed";
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto kernel : out_kernels_) {
|
||||
MS_ASSERT(nullptr != kernel);
|
||||
auto ret = kernel->DecOutTensorRefCount();
|
||||
if (0 != ret) {
|
||||
MS_ASSERT(kernel);
|
||||
ret = kernel->DecOutTensorRefCount();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(WARNING) << "DecOutTensorRefCount for kernel" << kernel->name() << " failed";
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SubGraphOpenCLKernel::GetKernelFromToTensor(const std::vector<lite::Tensor *> &in_tensors,
|
||||
const std::vector<kernel::LiteKernel *> &in_kernels,
|
||||
std::vector<std::vector<kernel::LiteKernel *>> *out_kernels,
|
||||
bool is_from) {
|
||||
void SubGraphOpenCLKernel::GetKernelFromToTensor(const std::vector<lite::Tensor *> &in_tensors,
|
||||
const std::vector<kernel::LiteKernel *> &in_kernels,
|
||||
std::vector<std::vector<kernel::LiteKernel *>> *out_kernels,
|
||||
bool is_from) {
|
||||
std::vector<std::set<lite::Tensor *>> ksets;
|
||||
for (auto jv : in_kernels) {
|
||||
MS_ASSERT(jv);
|
||||
auto tens = is_from ? jv->in_tensors() : jv->out_tensors();
|
||||
std::set<lite::Tensor *> kset;
|
||||
kset.insert(tens.begin(), tens.end());
|
||||
ksets.emplace_back(kset);
|
||||
}
|
||||
MS_ASSERT(out_kernels);
|
||||
for (auto in_tensor : in_tensors) {
|
||||
std::vector<kernel::LiteKernel *> kvec;
|
||||
for (size_t j = 0; j < in_kernels.size(); ++j) {
|
||||
|
@ -298,13 +319,13 @@ int SubGraphOpenCLKernel::GetKernelFromToTensor(const std::vector<lite::Tensor *
|
|||
}
|
||||
out_kernels->emplace_back(kvec);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SubGraphOpenCLKernel::GetInOutNodes() {
|
||||
void SubGraphOpenCLKernel::GetInOutNodes() {
|
||||
std::vector<std::set<lite::Tensor *>> ksets_in;
|
||||
std::vector<std::set<lite::Tensor *>> ksets_out;
|
||||
for (auto jv : nodes_) {
|
||||
MS_ASSERT(jv);
|
||||
std::set<lite::Tensor *> kset;
|
||||
kset.insert(jv->in_tensors().begin(), jv->in_tensors().end());
|
||||
ksets_in.emplace_back(kset);
|
||||
|
@ -323,10 +344,15 @@ int SubGraphOpenCLKernel::GetInOutNodes() {
|
|||
out_nodes_.emplace_back(nodes_.at(j));
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SubGraphOpenCLKernel::Prepare() {
|
||||
executor_ = new (std::nothrow) lite::opencl::OpenCLExecutor();
|
||||
if (executor_ == nullptr) {
|
||||
MS_LOG(ERROR) << "Create OpenCLExecutor fail";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
auto ret = Init();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "OpenCL subgraph init fail";
|
||||
|
@ -335,7 +361,7 @@ int SubGraphOpenCLKernel::Prepare() {
|
|||
return RET_OK;
|
||||
}
|
||||
|
||||
int SubGraphOpenCLKernel::UnInit() {
|
||||
void SubGraphOpenCLKernel::UnInit() {
|
||||
for (const auto &tensor : in_convert_tensors_) {
|
||||
delete tensor;
|
||||
}
|
||||
|
@ -351,7 +377,6 @@ int SubGraphOpenCLKernel::UnInit() {
|
|||
in_convert_ops_.clear();
|
||||
out_convert_ops_.clear();
|
||||
delete this->executor_;
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int SubGraphOpenCLKernel::InferShape() { return RET_OK; }
|
||||
|
@ -363,21 +388,28 @@ int SubGraphOpenCLKernel::Run() {
|
|||
MS_LOG(ERROR) << "executor is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
int ret;
|
||||
for (auto &tensor : in_tensors_) {
|
||||
MS_ASSERT(tensor);
|
||||
if (tensor->data_c() == nullptr) {
|
||||
MS_LOG(ERROR) << "OpenCL subgraph input tensor data is null";
|
||||
return RET_ERROR;
|
||||
}
|
||||
allocator_->UnmapBuffer(tensor->data_c());
|
||||
ret = allocator_->UnmapBuffer(tensor->data_c());
|
||||
if (ret != RET_OK) {
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
auto ret = executor_->Run(in_tensors_, out_tensors_, nodes_, allocator_);
|
||||
if (RET_OK != ret) {
|
||||
ret = executor_->Run(in_tensors_, out_tensors_, nodes_, allocator_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "Run opencl executor failed: " << ret;
|
||||
return ret;
|
||||
}
|
||||
ocl_runtime_->SyncCommandQueue();
|
||||
|
||||
if (!ocl_runtime_->SyncCommandQueue()) {
|
||||
return RET_ERROR;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
} // namespace mindspore::kernel
|
||||
|
|
|
@ -41,7 +41,6 @@ class SubGraphOpenCLKernel : public SubGraphKernel {
|
|||
ocl_runtime_ = ocl_runtime_wrap_.GetInstance();
|
||||
subgraph_type_ = kGpuSubGraph;
|
||||
this->name_ = "GpuSubGraph";
|
||||
this->executor_ = new lite::opencl::OpenCLExecutor();
|
||||
nodes_set_.insert(nodes.begin(), nodes.end());
|
||||
}
|
||||
~SubGraphOpenCLKernel() override;
|
||||
|
@ -56,23 +55,23 @@ class SubGraphOpenCLKernel : public SubGraphKernel {
|
|||
int Run(const KernelCallBack &before, const KernelCallBack &after) override { return this->Run(); };
|
||||
|
||||
private:
|
||||
int UnInit();
|
||||
int UpdateTensorDataType();
|
||||
void UnInit();
|
||||
void UpdateTensorDataType();
|
||||
int MallocTensorWithReuse();
|
||||
int ReplaceOutTensorAndKernelToNull(const std::vector<lite::Tensor *> &in_tensors,
|
||||
const std::vector<std::vector<kernel::LiteKernel *>> &in_kernels,
|
||||
lite::opencl::MemType mem_type);
|
||||
int ReplaceOutTensorAndKernelToConvert(const lite::Tensor *in_tensor,
|
||||
const std::vector<kernel::LiteKernel *> &in_kernels, lite::Tensor *new_tensor,
|
||||
kernel::LiteKernel *in_convert_op, lite::opencl::MemType mem_type);
|
||||
int GetInOutNodes();
|
||||
void ReplaceOutTensorAndKernelToNull(const std::vector<lite::Tensor *> &in_tensors,
|
||||
const std::vector<std::vector<kernel::LiteKernel *>> &in_kernels,
|
||||
lite::opencl::MemType mem_type);
|
||||
void ReplaceOutTensorAndKernelToConvert(const lite::Tensor *in_tensor,
|
||||
const std::vector<kernel::LiteKernel *> &in_kernels, lite::Tensor *new_tensor,
|
||||
kernel::LiteKernel *in_convert_op, lite::opencl::MemType mem_type);
|
||||
void GetInOutNodes();
|
||||
int GenToFormatOp(const std::vector<lite::Tensor *> &in_tensors,
|
||||
const std::vector<std::vector<kernel::LiteKernel *>> &in_kernels,
|
||||
std::vector<lite::Tensor *> *out_tensors, std::vector<OpenCLToFormatParameter *> *out_parameters,
|
||||
std::vector<LiteKernel *> *out_convert_ops, lite::opencl::MemType mem_type);
|
||||
int GetKernelFromToTensor(const std::vector<lite::Tensor *> &in_tensors,
|
||||
const std::vector<kernel::LiteKernel *> &in_kernels,
|
||||
std::vector<std::vector<kernel::LiteKernel *>> *out_kernels, bool is_from);
|
||||
void GetKernelFromToTensor(const std::vector<lite::Tensor *> &in_tensors,
|
||||
const std::vector<kernel::LiteKernel *> &in_kernels,
|
||||
std::vector<std::vector<kernel::LiteKernel *>> *out_kernels, bool is_from);
|
||||
lite::opencl::OpenCLAllocator *allocator_{nullptr};
|
||||
std::vector<lite::Tensor *> in_convert_tensors_;
|
||||
std::vector<lite::Tensor *> out_convert_tensors_;
|
||||
|
|
|
@ -87,6 +87,7 @@ int GetMaxDivisorStrategy1(int x, int divisor) {
|
|||
}
|
||||
|
||||
std::vector<size_t> GetCommonGlobalSize(const std::vector<size_t> &local, const std::vector<size_t> &global) {
|
||||
MS_ASSERT(local.size() == global.size() && local.size() == 3);
|
||||
std::vector<size_t> result(3);
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
result[i] = UP_ROUND(global[i], local[i]);
|
||||
|
@ -95,6 +96,7 @@ std::vector<size_t> GetCommonGlobalSize(const std::vector<size_t> &local, const
|
|||
}
|
||||
|
||||
std::vector<size_t> GetCommonLocalSize(const std::vector<size_t> &global, int max_size) {
|
||||
MS_ASSERT(global.size() == 3);
|
||||
size_t local_z = GetMaxDivisorStrategy0(global[2], 8);
|
||||
if (local_z == 0) {
|
||||
MS_LOG(ERROR) << "Divide by zero";
|
||||
|
@ -239,6 +241,7 @@ std::string CLErrorCode(cl_int error_code) {
|
|||
}
|
||||
|
||||
int WriteToBin(const std::string &file_path, void *data, size_t size) {
|
||||
MS_ASSERT(data);
|
||||
std::ofstream out_file;
|
||||
|
||||
out_file.open(file_path.c_str(), std::ios::binary);
|
||||
|
@ -256,7 +259,7 @@ int WriteToBin(const std::string &file_path, void *data, size_t size) {
|
|||
}
|
||||
|
||||
void PrintTensor(const lite::Tensor *tensor, MemType mem_type, int n, const std::string &out_file) {
|
||||
if (tensor->data_c() == nullptr) {
|
||||
if (tensor == nullptr || tensor->data_c() == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -305,6 +308,9 @@ void PrintTensor(const lite::Tensor *tensor, MemType mem_type, int n, const std:
|
|||
}
|
||||
|
||||
void PrintKernelOutput(OpenCLKernel *kernel, int n, const std::string &out_file) {
|
||||
if (kernel == nullptr) {
|
||||
return;
|
||||
}
|
||||
printf("%-30s", kernel->name().c_str());
|
||||
if (!kernel->out_tensors().empty()) {
|
||||
PrintTensor(kernel->out_tensors()[0], kernel->GetMemType(), n, out_file);
|
||||
|
|
|
@ -61,6 +61,8 @@ std::vector<size_t> GetImage2dShapeFromNHWC(const std::vector<int> &tensor_shape
|
|||
|
||||
template <class T1, class T2>
|
||||
void PackNCHWToNC4HW4(void *src, void *dst, int batch, int plane, int channel, const std::function<T2(T1)> &to_dtype) {
|
||||
MS_ASSERT(src);
|
||||
MS_ASSERT(dst);
|
||||
int c4 = UP_DIV(channel, C4NUM);
|
||||
for (int b = 0; b < batch; b++) {
|
||||
int src_offset = b * plane * channel;
|
||||
|
@ -81,6 +83,8 @@ void PackNCHWToNC4HW4(void *src, void *dst, int batch, int plane, int channel, c
|
|||
|
||||
template <class T1, class T2>
|
||||
void PackNHWCToNHWC4(void *src, void *dst, int batch, int plane, int channel, const std::function<T2(T1)> &to_dtype) {
|
||||
MS_ASSERT(src);
|
||||
MS_ASSERT(dst);
|
||||
int c4 = UP_DIV(channel, C4NUM);
|
||||
int nhwc4_batch_unit_offset = c4 * C4NUM * plane;
|
||||
int ic_remainder_ = channel % C4NUM;
|
||||
|
@ -106,6 +110,8 @@ void PackNHWCToNHWC4(void *src, void *dst, int batch, int plane, int channel, co
|
|||
|
||||
template <class T1, class T2>
|
||||
void PackNHWCToNC4HW4(void *src, void *dst, int batch, int plane, int channel, const std::function<T2(T1)> &to_dtype) {
|
||||
MS_ASSERT(src);
|
||||
MS_ASSERT(dst);
|
||||
int c4 = UP_DIV(channel, C4NUM);
|
||||
for (int b = 0; b < batch; b++) {
|
||||
int src_oc_offset = b * plane * channel;
|
||||
|
@ -142,6 +148,11 @@ std::vector<T> MatrixMultiply(const T A[], const T B[], int M, int N, int K) {
|
|||
template <typename SRC_T, typename DST_T>
|
||||
void ConvertConvWeight4DTo7D(void *src, void *dst, size_t CO, size_t KH, size_t KW, size_t CI, size_t OGroup = 1,
|
||||
const size_t CI_TILE = 4, const size_t CO_TILE = 4) {
|
||||
MS_ASSERT(src);
|
||||
MS_ASSERT(dst);
|
||||
MS_ASSERT(CI_TILE);
|
||||
MS_ASSERT(CO_TILE);
|
||||
MS_ASSERT(OGroup);
|
||||
if (CO_TILE == 0 || CI_TILE == 0) return;
|
||||
auto origin_weight = reinterpret_cast<SRC_T *>(src);
|
||||
auto packed_weight = reinterpret_cast<DST_T *>(dst);
|
||||
|
|
|
@ -66,6 +66,7 @@ void *OpenCLAllocator::MinimumFit(size_t size, const std::vector<size_t> &img_si
|
|||
|
||||
void *OpenCLAllocator::CreateBuffer(size_t size, void *data, size_t flags, cl::Buffer **buffer) {
|
||||
cl_int ret = CL_SUCCESS;
|
||||
MS_ASSERT(buffer);
|
||||
*buffer = new (std::nothrow) cl::Buffer(*ocl_runtime_->Context(), flags, size, data, &ret);
|
||||
if (*buffer == nullptr) {
|
||||
MS_LOG(ERROR) << "Create OpenCL buffer failed! (ERROR CODE: " << ret << ")";
|
||||
|
@ -78,7 +79,11 @@ void *OpenCLAllocator::CreateBuffer(size_t size, void *data, size_t flags, cl::B
|
|||
return nullptr;
|
||||
}
|
||||
cl::Memory *mem = *buffer;
|
||||
ocl_runtime_->UnmapBuffer(*mem, host_ptr);
|
||||
MS_ASSERT(mem);
|
||||
ret = ocl_runtime_->UnmapBuffer(*mem, host_ptr);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(WARNING) << "UnmapBuffer failed.";
|
||||
}
|
||||
return host_ptr;
|
||||
}
|
||||
|
||||
|
@ -110,7 +115,10 @@ void *OpenCLAllocator::CreateImage2D(size_t size, const std::vector<size_t> &img
|
|||
return nullptr;
|
||||
}
|
||||
cl::Memory *mem = *image;
|
||||
ocl_runtime_->UnmapBuffer(*mem, host_ptr);
|
||||
ret = ocl_runtime_->UnmapBuffer(*mem, host_ptr);
|
||||
if (ret != CL_SUCCESS) {
|
||||
MS_LOG(WARNING) << "UnmapBuffer failed.";
|
||||
}
|
||||
}
|
||||
return host_ptr;
|
||||
}
|
||||
|
@ -131,7 +139,7 @@ void *OpenCLAllocator::Malloc(size_t size, const std::vector<size_t> &img_size,
|
|||
}
|
||||
Lock();
|
||||
void *host_ptr = MinimumFit(size, img_size);
|
||||
if ((host_ptr != nullptr) && (data == nullptr)) {
|
||||
if (host_ptr != nullptr && data == nullptr) {
|
||||
UnLock();
|
||||
return host_ptr;
|
||||
}
|
||||
|
@ -188,7 +196,10 @@ void OpenCLAllocator::Free(void *buf) {
|
|||
auto iter = allocated_list_.find(buf);
|
||||
if (iter != allocated_list_.end()) {
|
||||
if (iter->second->map_flags) {
|
||||
UnmapBuffer(buf);
|
||||
int ret = UnmapBuffer(buf);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(WARNING) << "UnmapBuffer failed.";
|
||||
}
|
||||
iter->second->map_flags = false;
|
||||
}
|
||||
auto mem_buf = iter->second;
|
||||
|
@ -240,7 +251,10 @@ void OpenCLAllocator::Clear() {
|
|||
auto svm_capabilities = ocl_runtime_->GetSVMCapabilities();
|
||||
for (auto it = allocated_list_.begin(); it != allocated_list_.end(); it++) {
|
||||
if (it->second->map_flags) {
|
||||
UnmapBuffer(it->second->host_ptr_);
|
||||
int ret = UnmapBuffer(it->second->host_ptr_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(WARNING) << "UnmapBuffer failed.";
|
||||
}
|
||||
}
|
||||
if (svm_capabilities) {
|
||||
clSVMFree((*ocl_runtime_->Context())(), it->second->host_ptr_);
|
||||
|
@ -295,7 +309,11 @@ void *OpenCLAllocator::MapBuffer(void *host_ptr, int flags, void *command_queue,
|
|||
MS_LOG(ERROR) << "Map buffer failed, can not found buffer :" << host_ptr;
|
||||
return nullptr;
|
||||
}
|
||||
ocl_runtime_->MapBuffer(host_ptr, flags, it->second->size_, static_cast<cl::CommandQueue *>(command_queue), sync);
|
||||
int ret = ocl_runtime_->MapBuffer(host_ptr, flags, it->second->size_,
|
||||
static_cast<cl::CommandQueue *>(command_queue), sync);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(WARNING) << "MapBuffer failed.";
|
||||
}
|
||||
}
|
||||
return host_ptr;
|
||||
}
|
||||
|
@ -313,14 +331,16 @@ void *OpenCLAllocator::MapBuffer(void *host_ptr, int flags, void *command_queue,
|
|||
return host_ptr;
|
||||
}
|
||||
MemBuf *mem_buf = it->second;
|
||||
void *new_host_ptr{nullptr};
|
||||
MS_ASSERT(mem_buf);
|
||||
void *new_host_ptr;
|
||||
if (mem_buf->img_size.empty()) {
|
||||
cl::Buffer *buffer = static_cast<cl::Buffer *>(mem_buf->device_ptr_);
|
||||
MS_ASSERT(buffer);
|
||||
new_host_ptr = ocl_runtime_->MapBuffer(*buffer, flags, mem_buf->size_, nullptr, sync);
|
||||
} else {
|
||||
cl::ImageFormat image_format(CL_RGBA, mem_buf->img_size[2]);
|
||||
std::vector<size_t> region{mem_buf->img_size[0], mem_buf->img_size[1], 1};
|
||||
cl::Image2D *image = static_cast<cl::Image2D *>(mem_buf->image_ptr_);
|
||||
MS_ASSERT(image);
|
||||
new_host_ptr = ocl_runtime_->MapBuffer(*image, 0, CL_MAP_READ | CL_MAP_WRITE, region);
|
||||
}
|
||||
if (new_host_ptr == nullptr) {
|
||||
|
@ -373,6 +393,7 @@ MemType OpenCLAllocator::GetMemType(void *host_ptr) {
|
|||
return mem_type;
|
||||
}
|
||||
MemBuf *mem_buf = it->second;
|
||||
MS_ASSERT(mem_buf);
|
||||
if (mem_buf->img_size.empty()) {
|
||||
mem_type = MemType::BUF;
|
||||
} else {
|
||||
|
@ -383,6 +404,7 @@ MemType OpenCLAllocator::GetMemType(void *host_ptr) {
|
|||
}
|
||||
|
||||
int OpenCLAllocator::GetImageSize(void *host_ptr, std::vector<size_t> *img_size) {
|
||||
MS_ASSERT(img_size);
|
||||
Lock();
|
||||
auto it = allocated_list_.find(host_ptr);
|
||||
if (it == allocated_list_.end()) {
|
||||
|
@ -391,6 +413,7 @@ int OpenCLAllocator::GetImageSize(void *host_ptr, std::vector<size_t> *img_size)
|
|||
return RET_OK;
|
||||
}
|
||||
MemBuf *mem_buf = it->second;
|
||||
MS_ASSERT(mem_buf);
|
||||
if (!mem_buf->img_size.empty()) {
|
||||
*img_size = mem_buf->img_size;
|
||||
}
|
||||
|
|
|
@ -14,8 +14,8 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_OPENCL_ALLOCATOR_H_
|
||||
#define MINDSPORE_LITE_SRC_OPENCL_ALLOCATOR_H_
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_OPENCL_ALLOCATOR_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_OPENCL_ALLOCATOR_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
@ -29,17 +29,6 @@
|
|||
|
||||
namespace mindspore::lite::opencl {
|
||||
|
||||
#define MS_HOST_BUFFER 0
|
||||
#define MS_CL_BUFFER (1 << 1)
|
||||
#define MS_CL_IMAGE2D (1 << 2)
|
||||
typedef int32_t OpenCLMemoryType;
|
||||
|
||||
struct OpenclMemory {
|
||||
void *host_ptr{nullptr};
|
||||
void *device_ptr{nullptr};
|
||||
OpenCLMemoryType mem_type{MS_HOST_BUFFER | MS_CL_BUFFER};
|
||||
};
|
||||
|
||||
class OpenCLRuntime;
|
||||
enum class MemType : char { BUF, IMG };
|
||||
|
||||
|
@ -95,4 +84,4 @@ class OpenCLAllocator : public Allocator {
|
|||
|
||||
} // namespace mindspore::lite::opencl
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_OPENCL_ALLOCATOR_H_
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_OPENCL_ALLOCATOR_H_
|
||||
|
|
|
@ -21,14 +21,13 @@
|
|||
|
||||
namespace mindspore::lite::opencl {
|
||||
|
||||
int OpenCLExecutor::Prepare(const std::vector<kernel::LiteKernel *> &kernels) { return RET_OK; }
|
||||
|
||||
int OpenCLExecutor::Run(std::vector<Tensor *> &inputs, std::vector<Tensor *> &outputs,
|
||||
std::vector<kernel::LiteKernel *> &kernels, Allocator *allocator, const KernelCallBack &before,
|
||||
const KernelCallBack &after) {
|
||||
int ret;
|
||||
kernel::LiteKernelUtil::InitTensorRefCount(kernels);
|
||||
for (auto *kernel : kernels) {
|
||||
MS_ASSERT(nullptr != kernel);
|
||||
MS_ASSERT(kernel);
|
||||
CallBackParam callbackParam;
|
||||
callbackParam.node_name = kernel->name();
|
||||
|
||||
|
@ -41,19 +40,27 @@ int OpenCLExecutor::Run(std::vector<Tensor *> &inputs, std::vector<Tensor *> &ou
|
|||
auto cur_outputs = kernel->out_tensors();
|
||||
for (auto i = 0; i < cur_outputs.size(); ++i) {
|
||||
auto *output = cur_outputs.at(i);
|
||||
MS_ASSERT(nullptr != output);
|
||||
MS_ASSERT(output);
|
||||
if (op_kernel->GetMemType() == lite::opencl::MemType::IMG) {
|
||||
std::vector<size_t> img_size;
|
||||
op_kernel->GetImageSize(i, &img_size);
|
||||
ret = op_kernel->GetImageSize(i, &img_size);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "GetImageSize failed";
|
||||
return ret;
|
||||
}
|
||||
auto data_ptr = allocator_->Malloc(output->Size(), img_size);
|
||||
output->set_data(data_ptr);
|
||||
} else {
|
||||
output->MallocData(allocator_);
|
||||
ret = output->MallocData(allocator_);
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "MallocData failed";
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto ret = kernel->Run();
|
||||
if (0 != ret) {
|
||||
ret = kernel->Run();
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(ERROR) << "run kernel failed, name: " << kernel->name();
|
||||
return ret;
|
||||
}
|
||||
|
@ -64,9 +71,9 @@ int OpenCLExecutor::Run(std::vector<Tensor *> &inputs, std::vector<Tensor *> &ou
|
|||
}
|
||||
}
|
||||
for (auto input_kernel : kernel->in_kernels()) {
|
||||
MS_ASSERT(nullptr != input_kernel);
|
||||
MS_ASSERT(input_kernel);
|
||||
ret = input_kernel->DecOutTensorRefCount();
|
||||
if (0 != ret) {
|
||||
if (ret != RET_OK) {
|
||||
MS_LOG(WARNING) << "DecOutTensorRefCount for kernel" << kernel->name() << " failed";
|
||||
}
|
||||
}
|
||||
|
|
|
@ -14,8 +14,8 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_LITE_SRC_OPENCL_EXECUTOR_H_
|
||||
#define MINDSPORE_LITE_SRC_OPENCL_EXECUTOR_H_
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_OPENCL_EXECUTOR_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_OPENCL_EXECUTOR_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/runtime/opencl/opencl_runtime.h"
|
||||
|
@ -29,7 +29,7 @@ class OpenCLExecutor : public Executor {
|
|||
public:
|
||||
OpenCLExecutor() : Executor() { allocator_ = ocl_runtime.GetInstance()->GetAllocator(); }
|
||||
|
||||
int Prepare(const std::vector<kernel::LiteKernel *> &kernels) override;
|
||||
int Prepare(const std::vector<kernel::LiteKernel *> &kernels) override { return RET_OK; }
|
||||
|
||||
int Run(std::vector<Tensor *> &inputs, std::vector<Tensor *> &outputs, std::vector<kernel::LiteKernel *> &kernels,
|
||||
Allocator *allocator = nullptr, const KernelCallBack &before = nullptr,
|
||||
|
|
|
@ -100,8 +100,14 @@ int OpenCLRuntime::Init() {
|
|||
std::vector<cl::Device> devices;
|
||||
for (auto it = platforms.begin(); it != platforms.end(); ++it) {
|
||||
std::string platform_name;
|
||||
it->getInfo(CL_PLATFORM_NAME, &platform_name);
|
||||
it->getDevices(CL_DEVICE_TYPE_GPU, &devices);
|
||||
ret = it->getInfo(CL_PLATFORM_NAME, &platform_name);
|
||||
if (ret != CL_SUCCESS) {
|
||||
MS_LOG(WARNING) << CLErrorCode(ret);
|
||||
}
|
||||
ret = it->getDevices(CL_DEVICE_TYPE_GPU, &devices);
|
||||
if (ret != CL_SUCCESS) {
|
||||
MS_LOG(WARNING) << CLErrorCode(ret);
|
||||
}
|
||||
MS_LOG(INFO) << "Platform (" << platform_name << ") has " << devices.size() << " GPUs";
|
||||
|
||||
if (devices.size() > 0) {
|
||||
|
@ -178,9 +184,18 @@ int OpenCLRuntime::Init() {
|
|||
}
|
||||
|
||||
// get cache size, compute units and frequency.
|
||||
device_->getInfo(CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, &global_memery_cachesize_);
|
||||
device_->getInfo(CL_DEVICE_MAX_COMPUTE_UNITS, &compute_units_);
|
||||
device_->getInfo(CL_DEVICE_MAX_CLOCK_FREQUENCY, &max_freq_);
|
||||
ret = device_->getInfo(CL_DEVICE_GLOBAL_MEM_CACHE_SIZE, &global_memery_cachesize_);
|
||||
if (ret != CL_SUCCESS) {
|
||||
MS_LOG(WARNING) << CLErrorCode(ret);
|
||||
}
|
||||
ret = device_->getInfo(CL_DEVICE_MAX_COMPUTE_UNITS, &compute_units_);
|
||||
if (ret != CL_SUCCESS) {
|
||||
MS_LOG(WARNING) << CLErrorCode(ret);
|
||||
}
|
||||
ret = device_->getInfo(CL_DEVICE_MAX_CLOCK_FREQUENCY, &max_freq_);
|
||||
if (ret != CL_SUCCESS) {
|
||||
MS_LOG(WARNING) << CLErrorCode(ret);
|
||||
}
|
||||
cl_device_fp_config fp_config;
|
||||
auto success = device_->getInfo(CL_DEVICE_HALF_FP_CONFIG, &fp_config);
|
||||
support_fp16_ = CL_SUCCESS == success && fp_config > 0;
|
||||
|
@ -281,7 +296,9 @@ uint32_t OpenCLRuntime::DeviceMaxFreq() const { return max_freq_; }
|
|||
uint64_t OpenCLRuntime::GetMaxWorkGroupSize(const cl::Kernel &kernel) {
|
||||
uint64_t max_workgroup_size = 0;
|
||||
int ret = kernel.getWorkGroupInfo(*device_, CL_KERNEL_WORK_GROUP_SIZE, &max_workgroup_size);
|
||||
if (ret != 0) max_workgroup_size = 0;
|
||||
if (ret != CL_SUCCESS) {
|
||||
max_workgroup_size = 0;
|
||||
}
|
||||
return max_workgroup_size;
|
||||
}
|
||||
|
||||
|
@ -421,7 +438,10 @@ int OpenCLRuntime::RunKernel(const cl::Kernel &kernel, const std::vector<size_t>
|
|||
static int cnt = 0;
|
||||
const int flush_period = 10;
|
||||
if (cnt % flush_period == 0) {
|
||||
command_queue->flush();
|
||||
auto flush_ret = command_queue->flush();
|
||||
if (flush_ret != CL_SUCCESS) {
|
||||
MS_LOG(WARNING) << "CL Flush failed:" << CLErrorCode(ret);
|
||||
}
|
||||
}
|
||||
cnt++;
|
||||
MS_LOG(DEBUG) << "RunKernel success!";
|
||||
|
@ -454,7 +474,10 @@ int OpenCLRuntime::RunKernel(const cl::Kernel &kernel, const cl::NDRange &global
|
|||
static int cnt = 0;
|
||||
const int flush_period = 10;
|
||||
if (cnt % flush_period == 0) {
|
||||
command_queue->flush();
|
||||
auto flush_ret = command_queue->flush();
|
||||
if (flush_ret != CL_SUCCESS) {
|
||||
MS_LOG(WARNING) << "CL Flush failed:" << CLErrorCode(ret);
|
||||
}
|
||||
}
|
||||
cnt++;
|
||||
MS_LOG(DEBUG) << "RunKernel success!";
|
||||
|
|
Loading…
Reference in New Issue