新增深度概率用例

This commit is contained in:
rainyhorse 2021-01-28 17:21:19 +08:00
parent a84a5215ca
commit 7ccc970934
3 changed files with 184 additions and 0 deletions

View File

@ -0,0 +1,63 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for categorical distribution"""
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor
from mindspore import dtype as ms
import pytest
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
def generate_probs(seed, shape):
np.random.seed(seed)
probs = np.random.dirichlet(np.ones(shape[3]), size=1)
for _ in range(shape[0] - 1):
for _ in range(shape[1] - 1):
for _ in range(shape[2] - 1):
probs = np.vstack(((np.random.dirichlet(np.ones(shape[3]), size=1)), probs))
probs = np.array([probs, probs])
probs = np.array([probs, probs])
return probs
class CategoricalProb(nn.Cell):
def __init__(self, probs, seed=10, dtype=ms.int32, name='Categorical'):
super().__init__()
self.b = msd.Categorical(probs, seed, dtype, name)
def construct(self, value, probs=None):
out1 = self.b.prob(value, probs)
out2 = self.b.log_prob(value, probs)
out3 = self.b.cdf(value, probs)
out4 = self.b.log_cdf(value, probs)
out5 = self.b.survival_function(value, probs)
out6 = self.b.log_survival(value, probs)
return out1, out2, out3, out4, out5, out6
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_probability_categorical_prob_cdf_probs_none():
probs = None
probs1 = generate_probs(3, shape=(2, 2, 1, 64))
value = np.random.randint(0, 63, size=(64)).astype(np.float32)
net = CategoricalProb(probs)
net(Tensor(value), Tensor(probs1))

View File

@ -0,0 +1,72 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for cauchy distribution"""
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import Tensor
from mindspore import dtype as ms
import pytest
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
class CauchyMean(nn.Cell):
def __init__(self, loc, scale, seed=10, dtype=ms.float32, name='Cauchy'):
super().__init__()
self.b = msd.Cauchy(loc, scale, seed, dtype, name)
def construct(self):
out4 = self.b.entropy()
return out4
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_probability_cauchy_mean_loc_scale_rand_2_ndarray():
loc = np.random.randn(1024, 512, 7, 7).astype(np.float32)
scale = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
net = CauchyMean(loc, scale)
net()
class CauchyProb(nn.Cell):
def __init__(self, loc, scale, seed=10, dtype=ms.float32, name='Cauchy'):
super().__init__()
self.b = msd.Cauchy(loc, scale, seed, dtype, name)
def construct(self, value):
out1 = self.b.prob(value)
out2 = self.b.log_prob(value)
out3 = self.b.cdf(value)
out4 = self.b.log_cdf(value)
out5 = self.b.survival_function(value)
out6 = self.b.log_survival(value)
return out1, out2, out3, out4, out5, out6
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_probability_cauchy_prob_cdf_loc_scale_rand_4_ndarray():
loc = np.random.randn(1024, 512, 7, 7).astype(np.float32)
scale = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
value = np.random.randn(1024, 512, 7, 7).astype(np.float32)
net = CauchyProb(loc, scale)
net(Tensor(value))

View File

@ -0,0 +1,49 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cases for gamma distribution"""
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype as ms
import pytest
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
class GammaMean(nn.Cell):
def __init__(self, concentration, rate, seed=10, dtype=ms.float32, name='Gamma'):
super().__init__()
self.b = msd.Gamma(concentration, rate, seed, dtype, name)
def construct(self):
out1 = self.b.mean()
out2 = self.b.mode()
out3 = self.b.var()
out4 = self.b.entropy()
out5 = self.b.sd()
return out1, out2, out3, out4, out5
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.env_onecard
def test_probability_gamma_mean_cdoncentration_rate_rand_2_ndarray():
concentration = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
rate = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
net = GammaMean(concentration, rate)
net()