forked from mindspore-Ecosystem/mindspore
新增深度概率用例
This commit is contained in:
parent
a84a5215ca
commit
7ccc970934
|
@ -0,0 +1,63 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for categorical distribution"""
|
||||
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore import dtype as ms
|
||||
import pytest
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
def generate_probs(seed, shape):
|
||||
np.random.seed(seed)
|
||||
probs = np.random.dirichlet(np.ones(shape[3]), size=1)
|
||||
for _ in range(shape[0] - 1):
|
||||
for _ in range(shape[1] - 1):
|
||||
for _ in range(shape[2] - 1):
|
||||
probs = np.vstack(((np.random.dirichlet(np.ones(shape[3]), size=1)), probs))
|
||||
probs = np.array([probs, probs])
|
||||
probs = np.array([probs, probs])
|
||||
return probs
|
||||
|
||||
|
||||
class CategoricalProb(nn.Cell):
|
||||
def __init__(self, probs, seed=10, dtype=ms.int32, name='Categorical'):
|
||||
super().__init__()
|
||||
self.b = msd.Categorical(probs, seed, dtype, name)
|
||||
|
||||
def construct(self, value, probs=None):
|
||||
out1 = self.b.prob(value, probs)
|
||||
out2 = self.b.log_prob(value, probs)
|
||||
out3 = self.b.cdf(value, probs)
|
||||
out4 = self.b.log_cdf(value, probs)
|
||||
out5 = self.b.survival_function(value, probs)
|
||||
out6 = self.b.log_survival(value, probs)
|
||||
return out1, out2, out3, out4, out5, out6
|
||||
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_probability_categorical_prob_cdf_probs_none():
|
||||
probs = None
|
||||
probs1 = generate_probs(3, shape=(2, 2, 1, 64))
|
||||
value = np.random.randint(0, 63, size=(64)).astype(np.float32)
|
||||
net = CategoricalProb(probs)
|
||||
net(Tensor(value), Tensor(probs1))
|
|
@ -0,0 +1,72 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for cauchy distribution"""
|
||||
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import Tensor
|
||||
from mindspore import dtype as ms
|
||||
import pytest
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class CauchyMean(nn.Cell):
|
||||
def __init__(self, loc, scale, seed=10, dtype=ms.float32, name='Cauchy'):
|
||||
super().__init__()
|
||||
self.b = msd.Cauchy(loc, scale, seed, dtype, name)
|
||||
|
||||
def construct(self):
|
||||
out4 = self.b.entropy()
|
||||
return out4
|
||||
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_probability_cauchy_mean_loc_scale_rand_2_ndarray():
|
||||
loc = np.random.randn(1024, 512, 7, 7).astype(np.float32)
|
||||
scale = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
|
||||
net = CauchyMean(loc, scale)
|
||||
net()
|
||||
|
||||
|
||||
class CauchyProb(nn.Cell):
|
||||
def __init__(self, loc, scale, seed=10, dtype=ms.float32, name='Cauchy'):
|
||||
super().__init__()
|
||||
self.b = msd.Cauchy(loc, scale, seed, dtype, name)
|
||||
|
||||
def construct(self, value):
|
||||
out1 = self.b.prob(value)
|
||||
out2 = self.b.log_prob(value)
|
||||
out3 = self.b.cdf(value)
|
||||
out4 = self.b.log_cdf(value)
|
||||
out5 = self.b.survival_function(value)
|
||||
out6 = self.b.log_survival(value)
|
||||
return out1, out2, out3, out4, out5, out6
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_probability_cauchy_prob_cdf_loc_scale_rand_4_ndarray():
|
||||
loc = np.random.randn(1024, 512, 7, 7).astype(np.float32)
|
||||
scale = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
|
||||
value = np.random.randn(1024, 512, 7, 7).astype(np.float32)
|
||||
net = CauchyProb(loc, scale)
|
||||
net(Tensor(value))
|
|
@ -0,0 +1,49 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for gamma distribution"""
|
||||
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
import mindspore.nn.probability.distribution as msd
|
||||
from mindspore import dtype as ms
|
||||
import pytest
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
|
||||
|
||||
|
||||
class GammaMean(nn.Cell):
|
||||
def __init__(self, concentration, rate, seed=10, dtype=ms.float32, name='Gamma'):
|
||||
super().__init__()
|
||||
self.b = msd.Gamma(concentration, rate, seed, dtype, name)
|
||||
|
||||
def construct(self):
|
||||
out1 = self.b.mean()
|
||||
out2 = self.b.mode()
|
||||
out3 = self.b.var()
|
||||
out4 = self.b.entropy()
|
||||
out5 = self.b.sd()
|
||||
return out1, out2, out3, out4, out5
|
||||
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_probability_gamma_mean_cdoncentration_rate_rand_2_ndarray():
|
||||
concentration = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
|
||||
rate = np.random.uniform(0.0001, 100, size=(1024, 512, 7, 7)).astype(np.float32)
|
||||
net = GammaMean(concentration, rate)
|
||||
net()
|
Loading…
Reference in New Issue