forked from mindspore-Ecosystem/mindspore
Update invalid links.
This commit is contained in:
parent
4b81175071
commit
7ad8452617
|
@ -31,7 +31,7 @@ enrichment of the AI software/hardware application ecosystem.
|
|||
|
||||
<img src="docs/MindSpore-architecture.png" alt="MindSpore Architecture" width="600"/>
|
||||
|
||||
For more details please check out our [Architecture Guide](https://www.mindspore.cn/doc/note/en/master/design/mindspore/architecture.html) (visit [Architecture Guide](https://www.mindspore.cn/docs/en/master/architecture.html) before Sep. 24).
|
||||
For more details please check out our [Architecture Guide](https://www.mindspore.cn/doc/note/en/master/design/mindspore/architecture.html).
|
||||
|
||||
### Automatic Differentiation
|
||||
|
||||
|
@ -208,7 +208,7 @@ please check out [docker](docker/README.md) repo for the details.
|
|||
|
||||
## Quickstart
|
||||
|
||||
See the [Quick Start](https://www.mindspore.cn/tutorial/training/en/master/quick_start/quick_start.html) (visit [Quick Start](https://www.mindspore.cn/tutorial/en/master/quick_start/quick_start.html) before Sep. 24)
|
||||
See the [Quick Start](https://www.mindspore.cn/tutorial/training/en/master/quick_start/quick_start.html)
|
||||
to implement the image classification.
|
||||
|
||||
## Docs
|
||||
|
|
|
@ -28,7 +28,7 @@ MindSpore提供了友好的设计和高效的执行,旨在提升数据科学
|
|||
|
||||
<img src="docs/MindSpore-architecture.png" alt="MindSpore Architecture" width="600"/>
|
||||
|
||||
欲了解更多详情,请查看我们的[总体架构](https://www.mindspore.cn/doc/note/zh-CN/master/design/mindspore/architecture.html)(9月24日前请访问[总体架构](https://www.mindspore.cn/docs/zh-CN/master/architecture.html))。
|
||||
欲了解更多详情,请查看我们的[总体架构](https://www.mindspore.cn/doc/note/zh-CN/master/design/mindspore/architecture.html)。
|
||||
|
||||
### 自动微分
|
||||
|
||||
|
@ -203,7 +203,7 @@ MindSpore的Docker镜像托管在[Docker Hub](https://hub.docker.com/r/mindspore
|
|||
|
||||
## 快速入门
|
||||
|
||||
参考[快速入门](https://www.mindspore.cn/tutorial/training/zh-CN/master/quick_start/quick_start.html)(9月24日前请访问[快速入门](https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_start.html))实现图片分类。
|
||||
参考[快速入门](https://www.mindspore.cn/tutorial/training/zh-CN/master/quick_start/quick_start.html)实现图片分类。
|
||||
|
||||
|
||||
## 文档
|
||||
|
|
|
@ -60,7 +60,7 @@ Pascal VOC datasets and Semantic Boundaries Dataset
|
|||
|
||||
## Mixed Precision
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data types, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data types, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
@ -70,8 +70,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
|
|||
- Framework
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
|
||||
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
|
||||
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/zh-CN/master/index.html)
|
||||
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/zh-CN/master/index.html)
|
||||
- Install python packages in requirements.txt
|
||||
- Generate config json file for 8pcs training
|
||||
|
||||
|
|
|
@ -176,7 +176,7 @@ Note the results is two-classification(person and face) used our own annotations
|
|||
## [Evaluation Process](#contents)
|
||||
### Evaluation on Ascend
|
||||
|
||||
To eval, run `eval.py` with the dataset `image_dir`, `anno_path`(eval txt), `mindrecord_dir` and `ckpt_path`. `ckpt_path` is the path of [checkpoint](https://www.mindspore.cn/tutorial/training/en/master/use/save_and_load_model.html) file.
|
||||
To eval, run `eval.py` with the dataset `image_dir`, `anno_path`(eval txt), `mindrecord_dir` and `ckpt_path`. `ckpt_path` is the path of [checkpoint](https://www.mindspore.cn/tutorial/training/en/master/use/save_model.html) file.
|
||||
|
||||
```
|
||||
sh run_eval.sh 0 yolo.ckpt ./Mindrecord_eval ./dataset ./dataset/eval.txt
|
||||
|
|
|
@ -633,4 +633,4 @@ The model has been validated on Ascend environment, not validated on CPU and GPU
|
|||
|
||||
|
||||
# ModelZoo Homepage
|
||||
[Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)
|
||||
[Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo)
|
||||
|
|
Loading…
Reference in New Issue