forked from mindspore-Ecosystem/mindspore
Fixed 2D one-hot label problems in CutMix and MixUp
This commit is contained in:
parent
43a61e46af
commit
7ad7024c45
|
@ -59,10 +59,17 @@ Status CutMixBatchOp::Compute(const TensorRow &input, TensorRow *output) {
|
|||
|
||||
// Check inputs
|
||||
if (image_shape.size() != 4 || image_shape[0] != label_shape[0]) {
|
||||
RETURN_STATUS_UNEXPECTED("You must make sure images are HWC or CHW and batched before calling CutMixBatch.");
|
||||
RETURN_STATUS_UNEXPECTED(
|
||||
"CutMixBatch: You must make sure images are HWC or CHW and batched before calling CutMixBatch.");
|
||||
}
|
||||
if (label_shape.size() != 2) {
|
||||
RETURN_STATUS_UNEXPECTED("CutMixBatch: Label's must be in one-hot format and in a batch.");
|
||||
if (!input.at(1)->type().IsInt()) {
|
||||
RETURN_STATUS_UNEXPECTED("CutMixBatch: Wrong labels type. The second column (labels) must only include int types.");
|
||||
}
|
||||
if (label_shape.size() != 2 && label_shape.size() != 3) {
|
||||
RETURN_STATUS_UNEXPECTED(
|
||||
"CutMixBatch: Wrong labels shape. The second column (labels) must have a shape of NC or NLC where N is the batch "
|
||||
"size, L is the number of labels in each row, "
|
||||
"and C is the number of classes. labels must be in one-hot format and in a batch.");
|
||||
}
|
||||
if ((image_shape[1] != 1 && image_shape[1] != 3) && image_batch_format_ == ImageBatchFormat::kNCHW) {
|
||||
RETURN_STATUS_UNEXPECTED("CutMixBatch: Image doesn't match the given image format.");
|
||||
|
@ -84,10 +91,12 @@ Status CutMixBatchOp::Compute(const TensorRow &input, TensorRow *output) {
|
|||
|
||||
// Tensor holding the output labels
|
||||
std::shared_ptr<Tensor> out_labels;
|
||||
RETURN_IF_NOT_OK(Tensor::CreateEmpty(TensorShape(label_shape), DataType(DataType::DE_FLOAT32), &out_labels));
|
||||
RETURN_IF_NOT_OK(TypeCast(std::move(input.at(1)), &out_labels, DataType(DataType::DE_FLOAT32)));
|
||||
|
||||
int64_t row_labels = label_shape.size() == 3 ? label_shape[1] : 1;
|
||||
int64_t num_classes = label_shape.size() == 3 ? label_shape[2] : label_shape[1];
|
||||
// Compute labels and images
|
||||
for (int i = 0; i < image_shape[0]; i++) {
|
||||
for (int64_t i = 0; i < image_shape[0]; i++) {
|
||||
// Calculating lambda
|
||||
// If x1 is a random variable from Gamma(a1, 1) and x2 is a random variable from Gamma(a2, 1)
|
||||
// then x = x1 / (x1+x2) is a random variable from Beta(a1, a2)
|
||||
|
@ -138,22 +147,29 @@ Status CutMixBatchOp::Compute(const TensorRow &input, TensorRow *output) {
|
|||
}
|
||||
|
||||
// Compute labels
|
||||
for (int j = 0; j < label_shape[1]; j++) {
|
||||
if (input.at(1)->type().IsSignedInt()) {
|
||||
int64_t first_value, second_value;
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&first_value, {i, j}));
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&second_value, {rand_indx[i] % label_shape[0], j}));
|
||||
RETURN_IF_NOT_OK(out_labels->SetItemAt({i, j}, label_lam * first_value + (1 - label_lam) * second_value));
|
||||
} else {
|
||||
uint64_t first_value, second_value;
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&first_value, {i, j}));
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&second_value, {rand_indx[i] % label_shape[0], j}));
|
||||
RETURN_IF_NOT_OK(out_labels->SetItemAt({i, j}, label_lam * first_value + (1 - label_lam) * second_value));
|
||||
|
||||
for (int64_t j = 0; j < row_labels; j++) {
|
||||
for (int64_t k = 0; k < num_classes; k++) {
|
||||
std::vector<int64_t> first_index = label_shape.size() == 3 ? std::vector{i, j, k} : std::vector{i, k};
|
||||
std::vector<int64_t> second_index =
|
||||
label_shape.size() == 3 ? std::vector{rand_indx[i], j, k} : std::vector{rand_indx[i], k};
|
||||
if (input.at(1)->type().IsSignedInt()) {
|
||||
int64_t first_value, second_value;
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&first_value, first_index));
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&second_value, second_index));
|
||||
RETURN_IF_NOT_OK(
|
||||
out_labels->SetItemAt(first_index, label_lam * first_value + (1 - label_lam) * second_value));
|
||||
} else {
|
||||
uint64_t first_value, second_value;
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&first_value, first_index));
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&second_value, second_index));
|
||||
RETURN_IF_NOT_OK(
|
||||
out_labels->SetItemAt(first_index, label_lam * first_value + (1 - label_lam) * second_value));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::shared_ptr<Tensor> out_images;
|
||||
RETURN_IF_NOT_OK(TensorVectorToBatchTensor(images, &out_images));
|
||||
|
||||
|
|
|
@ -38,10 +38,17 @@ Status MixUpBatchOp::Compute(const TensorRow &input, TensorRow *output) {
|
|||
|
||||
// Check inputs
|
||||
if (image_shape.size() != 4 || image_shape[0] != label_shape[0]) {
|
||||
RETURN_STATUS_UNEXPECTED("You must make sure images are HWC or CHW and batched before calling MixUpBatch.");
|
||||
RETURN_STATUS_UNEXPECTED(
|
||||
"MixUpBatch:You must make sure images are HWC or CHW and batched before calling MixUpBatch.");
|
||||
}
|
||||
if (label_shape.size() != 2) {
|
||||
RETURN_STATUS_UNEXPECTED("MixUpBatch: Label's must be in one-hot format and in a batch.");
|
||||
if (!input.at(1)->type().IsInt()) {
|
||||
RETURN_STATUS_UNEXPECTED("MixUpBatch: Wrong labels type. The second column (labels) must only include int types.");
|
||||
}
|
||||
if (label_shape.size() != 2 && label_shape.size() != 3) {
|
||||
RETURN_STATUS_UNEXPECTED(
|
||||
"MixUpBatch: Wrong labels shape. The second column (labels) must have a shape of NC or NLC where N is the batch "
|
||||
"size, L is the number of labels in each row, "
|
||||
"and C is the number of classes. labels must be in one-hot format and in a batch.");
|
||||
}
|
||||
if ((image_shape[1] != 1 && image_shape[1] != 3) && (image_shape[3] != 1 && image_shape[3] != 3)) {
|
||||
RETURN_STATUS_UNEXPECTED("MixUpBatch: Images must be in the shape of HWC or CHW.");
|
||||
|
@ -65,23 +72,31 @@ Status MixUpBatchOp::Compute(const TensorRow &input, TensorRow *output) {
|
|||
|
||||
// Compute labels
|
||||
std::shared_ptr<Tensor> out_labels;
|
||||
RETURN_IF_NOT_OK(TypeCast(std::move(input.at(1)), &out_labels, DataType("float32")));
|
||||
RETURN_IF_NOT_OK(TypeCast(std::move(input.at(1)), &out_labels, DataType(DataType::DE_FLOAT32)));
|
||||
|
||||
int64_t row_labels = label_shape.size() == 3 ? label_shape[1] : 1;
|
||||
int64_t num_classes = label_shape.size() == 3 ? label_shape[2] : label_shape[1];
|
||||
|
||||
for (int64_t i = 0; i < label_shape[0]; i++) {
|
||||
for (int64_t j = 0; j < label_shape[1]; j++) {
|
||||
if (input.at(1)->type().IsSignedInt()) {
|
||||
int64_t first_value, second_value;
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&first_value, {i, j}));
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&second_value, {rand_indx[i], j}));
|
||||
RETURN_IF_NOT_OK(out_labels->SetItemAt({i, j}, lam * first_value + (1 - lam) * second_value));
|
||||
} else {
|
||||
uint64_t first_value, second_value;
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&first_value, {i, j}));
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&second_value, {rand_indx[i], j}));
|
||||
RETURN_IF_NOT_OK(out_labels->SetItemAt({i, j}, lam * first_value + (1 - lam) * second_value));
|
||||
for (int64_t j = 0; j < row_labels; j++) {
|
||||
for (int64_t k = 0; k < num_classes; k++) {
|
||||
std::vector<int64_t> first_index = label_shape.size() == 3 ? std::vector{i, j, k} : std::vector{i, k};
|
||||
std::vector<int64_t> second_index =
|
||||
label_shape.size() == 3 ? std::vector{rand_indx[i], j, k} : std::vector{rand_indx[i], k};
|
||||
if (input.at(1)->type().IsSignedInt()) {
|
||||
int64_t first_value, second_value;
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&first_value, first_index));
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&second_value, second_index));
|
||||
RETURN_IF_NOT_OK(out_labels->SetItemAt(first_index, lam * first_value + (1 - lam) * second_value));
|
||||
} else {
|
||||
uint64_t first_value, second_value;
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&first_value, first_index));
|
||||
RETURN_IF_NOT_OK(input.at(1)->GetItemAt(&second_value, second_index));
|
||||
RETURN_IF_NOT_OK(out_labels->SetItemAt(first_index, lam * first_value + (1 - lam) * second_value));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Compute images
|
||||
for (int64_t i = 0; i < images.size(); i++) {
|
||||
TensorShape remaining({-1});
|
||||
|
|
|
@ -27,6 +27,7 @@ from util import save_and_check_md5, diff_mse, visualize_list, config_get_set_se
|
|||
|
||||
DATA_DIR = "../data/dataset/testCifar10Data"
|
||||
DATA_DIR2 = "../data/dataset/testImageNetData2/train/"
|
||||
DATA_DIR3 = "../data/dataset/testCelebAData/"
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
|
@ -36,7 +37,6 @@ def test_cutmix_batch_success1(plot=False):
|
|||
Test CutMixBatch op with specified alpha and prob parameters on a batch of CHW images
|
||||
"""
|
||||
logger.info("test_cutmix_batch_success1")
|
||||
|
||||
# Original Images
|
||||
ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
|
||||
ds_original = ds_original.batch(5, drop_remainder=True)
|
||||
|
@ -164,6 +164,53 @@ def test_cutmix_batch_success3(plot=False):
|
|||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
|
||||
|
||||
def test_cutmix_batch_success4(plot=False):
|
||||
"""
|
||||
Test CutMixBatch on a dataset where OneHot returns a 2D vector
|
||||
"""
|
||||
logger.info("test_cutmix_batch_success4")
|
||||
|
||||
ds_original = ds.CelebADataset(DATA_DIR3, shuffle=False)
|
||||
decode_op = vision.Decode()
|
||||
ds_original = ds_original.map(input_columns=["image"], operations=[decode_op])
|
||||
ds_original = ds_original.batch(2, drop_remainder=True)
|
||||
|
||||
images_original = None
|
||||
for idx, (image, _) in enumerate(ds_original):
|
||||
if idx == 0:
|
||||
images_original = image
|
||||
else:
|
||||
images_original = np.append(images_original, image, axis=0)
|
||||
|
||||
# CutMix Images
|
||||
data1 = ds.CelebADataset(dataset_dir=DATA_DIR3, shuffle=False)
|
||||
|
||||
decode_op = vision.Decode()
|
||||
data1 = data1.map(input_columns=["image"], operations=[decode_op])
|
||||
|
||||
one_hot_op = data_trans.OneHot(num_classes=100)
|
||||
data1 = data1.map(input_columns=["attr"], operations=one_hot_op)
|
||||
|
||||
cutmix_batch_op = vision.CutMixBatch(mode.ImageBatchFormat.NHWC, 0.5, 0.9)
|
||||
data1 = data1.batch(2, drop_remainder=True)
|
||||
data1 = data1.map(input_columns=["image", "attr"], operations=cutmix_batch_op)
|
||||
|
||||
images_cutmix = None
|
||||
for idx, (image, _) in enumerate(data1):
|
||||
if idx == 0:
|
||||
images_cutmix = image
|
||||
else:
|
||||
images_cutmix = np.append(images_cutmix, image, axis=0)
|
||||
if plot:
|
||||
visualize_list(images_original, images_cutmix)
|
||||
|
||||
num_samples = images_original.shape[0]
|
||||
mse = np.zeros(num_samples)
|
||||
for i in range(num_samples):
|
||||
mse[i] = diff_mse(images_cutmix[i], images_original[i])
|
||||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
|
||||
|
||||
def test_cutmix_batch_nhwc_md5():
|
||||
"""
|
||||
Test CutMixBatch on a batch of HWC images with MD5:
|
||||
|
@ -368,7 +415,7 @@ def test_cutmix_batch_fail7():
|
|||
images_cutmix = image
|
||||
else:
|
||||
images_cutmix = np.append(images_cutmix, image, axis=0)
|
||||
error_message = "CutMixBatch: Label's must be in one-hot format and in a batch"
|
||||
error_message = "CutMixBatch: Wrong labels shape. The second column (labels) must have a shape of NC or NLC"
|
||||
assert error_message in str(error.value)
|
||||
|
||||
|
||||
|
@ -394,6 +441,7 @@ if __name__ == "__main__":
|
|||
test_cutmix_batch_success1(plot=True)
|
||||
test_cutmix_batch_success2(plot=True)
|
||||
test_cutmix_batch_success3(plot=True)
|
||||
test_cutmix_batch_success4(plot=True)
|
||||
test_cutmix_batch_nchw_md5()
|
||||
test_cutmix_batch_nhwc_md5()
|
||||
test_cutmix_batch_fail1()
|
||||
|
|
|
@ -26,6 +26,7 @@ from util import save_and_check_md5, diff_mse, visualize_list, config_get_set_se
|
|||
|
||||
DATA_DIR = "../data/dataset/testCifar10Data"
|
||||
DATA_DIR2 = "../data/dataset/testImageNetData2/train/"
|
||||
DATA_DIR3 = "../data/dataset/testCelebAData/"
|
||||
|
||||
GENERATE_GOLDEN = False
|
||||
|
||||
|
@ -162,6 +163,55 @@ def test_mixup_batch_success3(plot=False):
|
|||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
|
||||
|
||||
def test_mixup_batch_success4(plot=False):
|
||||
"""
|
||||
Test MixUpBatch op on a dataset where OneHot returns a 2D vector.
|
||||
Alpha parameter will be selected by default in this case
|
||||
"""
|
||||
logger.info("test_mixup_batch_success4")
|
||||
|
||||
# Original Images
|
||||
ds_original = ds.CelebADataset(DATA_DIR3, shuffle=False)
|
||||
decode_op = vision.Decode()
|
||||
ds_original = ds_original.map(input_columns=["image"], operations=[decode_op])
|
||||
ds_original = ds_original.batch(2, drop_remainder=True)
|
||||
|
||||
images_original = None
|
||||
for idx, (image, _) in enumerate(ds_original):
|
||||
if idx == 0:
|
||||
images_original = image
|
||||
else:
|
||||
images_original = np.append(images_original, image, axis=0)
|
||||
|
||||
# MixUp Images
|
||||
data1 = ds.CelebADataset(DATA_DIR3, shuffle=False)
|
||||
|
||||
decode_op = vision.Decode()
|
||||
data1 = data1.map(input_columns=["image"], operations=[decode_op])
|
||||
|
||||
one_hot_op = data_trans.OneHot(num_classes=100)
|
||||
data1 = data1.map(input_columns=["attr"], operations=one_hot_op)
|
||||
|
||||
mixup_batch_op = vision.MixUpBatch()
|
||||
data1 = data1.batch(2, drop_remainder=True)
|
||||
data1 = data1.map(input_columns=["image", "attr"], operations=mixup_batch_op)
|
||||
|
||||
images_mixup = np.array([])
|
||||
for idx, (image, _) in enumerate(data1):
|
||||
if idx == 0:
|
||||
images_mixup = image
|
||||
else:
|
||||
images_mixup = np.append(images_mixup, image, axis=0)
|
||||
if plot:
|
||||
visualize_list(images_original, images_mixup)
|
||||
|
||||
num_samples = images_original.shape[0]
|
||||
mse = np.zeros(num_samples)
|
||||
for i in range(num_samples):
|
||||
mse[i] = diff_mse(images_mixup[i], images_original[i])
|
||||
logger.info("MSE= {}".format(str(np.mean(mse))))
|
||||
|
||||
|
||||
def test_mixup_batch_md5():
|
||||
"""
|
||||
Test MixUpBatch with MD5:
|
||||
|
@ -218,7 +268,7 @@ def test_mixup_batch_fail1():
|
|||
images_mixup = image
|
||||
else:
|
||||
images_mixup = np.append(images_mixup, image, axis=0)
|
||||
error_message = "You must make sure images are HWC or CHW and batch"
|
||||
error_message = "You must make sure images are HWC or CHW and batched"
|
||||
assert error_message in str(error.value)
|
||||
|
||||
|
||||
|
@ -316,12 +366,50 @@ def test_mixup_batch_fail4():
|
|||
assert error_message in str(error.value)
|
||||
|
||||
|
||||
def test_mixup_batch_fail5():
|
||||
"""
|
||||
Test MixUpBatch Fail 5
|
||||
We expect this to fail because labels are not OntHot encoded
|
||||
"""
|
||||
logger.info("test_mixup_batch_fail5")
|
||||
|
||||
# Original Images
|
||||
ds_original = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
|
||||
ds_original = ds_original.batch(5)
|
||||
|
||||
images_original = np.array([])
|
||||
for idx, (image, _) in enumerate(ds_original):
|
||||
if idx == 0:
|
||||
images_original = image
|
||||
else:
|
||||
images_original = np.append(images_original, image, axis=0)
|
||||
|
||||
# MixUp Images
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR, num_samples=10, shuffle=False)
|
||||
|
||||
mixup_batch_op = vision.MixUpBatch()
|
||||
data1 = data1.batch(5, drop_remainder=True)
|
||||
data1 = data1.map(input_columns=["image", "label"], operations=mixup_batch_op)
|
||||
|
||||
with pytest.raises(RuntimeError) as error:
|
||||
images_mixup = np.array([])
|
||||
for idx, (image, _) in enumerate(data1):
|
||||
if idx == 0:
|
||||
images_mixup = image
|
||||
else:
|
||||
images_mixup = np.append(images_mixup, image, axis=0)
|
||||
error_message = "MixUpBatch: Wrong labels shape. The second column (labels) must have a shape of NC or NLC"
|
||||
assert error_message in str(error.value)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_mixup_batch_success1(plot=True)
|
||||
test_mixup_batch_success2(plot=True)
|
||||
test_mixup_batch_success3(plot=True)
|
||||
test_mixup_batch_success4(plot=True)
|
||||
test_mixup_batch_md5()
|
||||
test_mixup_batch_fail1()
|
||||
test_mixup_batch_fail2()
|
||||
test_mixup_batch_fail3()
|
||||
test_mixup_batch_fail4()
|
||||
test_mixup_batch_fail5()
|
||||
|
|
Loading…
Reference in New Issue